Skip to main content
Log in

Effect of the Composition and Synthesis Procedure of Catalysts Based on CoAl Hydroxides on Their Properties in Furfural Hydrogenation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The CoAl hydroxides with Co/Al ratios of 2 and 4 were synthesized using traditional coprecipitation and a mechanochemical method. The structural properties of the samples at all stages of catalyst preparation, the transformations occurred on the reduction of cobalt from corresponding oxides, the textural characteristics of calcined and reduced systems, and the size, morphology, and composition of particles formed after high-temperature treatments were studied in detail. It was established that the synthesis procedure of CoAl hydroxides has a significant effect on the phase composition and properties of the resulting systems. The layered double hydroxide phase was formed only when the coprecipitation method was used. The mechanochemical approach made it possible to obtain materials with a higher specific surface area. According to TEM data, the samples synthesized by coprecipitation (after oxidative and reductive treatments) had a core–shell structure, where the core included metallic Co atoms and the shell mainly consisted of CoAl spinel. The samples prepared by the mechanochemical method had highly dispersed Co nanoparticles on their surface. The catalysts based on CoAl systems prepared by the mechanochemical method were more active in the hydrogenation of furfural: its conversion reached 97% on a sample with the ratio Co/Al = 4. In this case, the selectivity for furfuryl alcohol formation on the studied catalysts was almost 100% regardless of the synthesis procedure and Co/Al ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ekpeni, L.E.N., Benyounis, K.Y., Nkem-Ekpeni, F., Stokes, J., and Olabi, A.G., Energy Procedia, 2014, vol. 61, p. 1740.

    Article  Google Scholar 

  2. Bozell, J.J. and Petersen, G.R., Green Chem., 2010, vol. 12, no. 4, p. 539.

    Article  CAS  Google Scholar 

  3. Yan, K., Wu, G., Lafleur, T., and Jarvis, C., Renewable Sustainable Energy Rev., 2014, vol. 38, p. 663.

    Article  CAS  Google Scholar 

  4. Mishra, D.K., Kumar, S., and Shukla, R.S., in Biomass, Biofuels, Biochemicals, Amsterdam: Elsevier, 2020, p. 323.

    Google Scholar 

  5. Bremner, J.G.M. and Keeys, R.K.F., J. Chem. Soc., 1947, p. 1068.

  6. Fulajtárova, K., Soták, T., Hronec, M., Vávra, I., Dobročka, E., and Omastová, M., Appl. Catal., A, 2015, vol. 502, p. 78.

  7. Mironenko, R.M., Belskaya, O.B., Talsi, V.P., and Likholobov, V.A., J. Catal., 2020, vol. 389, p. 721.

    Article  CAS  Google Scholar 

  8. Taylor, M.J., Durndell, L.J., Isaacs, M.A., Parlett, C.M.A., Wilson, K., Lee, A.F., and Kyriakou, G., Appl. Catal. B: Environ., 2016, vol. 180, p. 580.

    Article  CAS  Google Scholar 

  9. Bhogeswararao, S. and Srinivas, D., J. Catal., 2015, vol. 327, p. 65.

    Article  CAS  Google Scholar 

  10. Audemar, M., Ciotonea, C., De Oliveira Vigier, K., Royer, S., Ungureanu, A., Dragoi, B., Dumitriu, E., and Jerome, F., ChemSusChem, 2015, vol. 8, no. 11, p. 1885.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, P., Li, X., Gao, W., Wang, X., Tang, Y., Lan, K., Wang, B., and Li, R., Catal. Commun., 2018, vol. 111, p. 6.

    Article  CAS  Google Scholar 

  12. Gong, W., Chen, C., Zhang, H., Wang, G., and Zhao, H., Catal. Sci. Technol., 2018, vol. 8, no. 21, p. 5506.

    Article  CAS  Google Scholar 

  13. Chen, X., Li, H., Luo, H., and Qiao, M., Appl. Catal. A: Gen., 2002, vol. 233, p. 13.

    Article  CAS  Google Scholar 

  14. Srivastava, S., Mohanty, P., Parikh, J.K., Dalai, A.K., Amritphale, S.S., and Khare, A.K., Chin. J. Catal., 2015, vol. 36, no. 7, p. 933.

    Article  CAS  Google Scholar 

  15. Mironenko, R.M., Likholobov, V.A., and Belskaya, O.B., Russ. Chem. Rev., 2022, vol. 91, no. 1, p. RCR5017.

    Article  Google Scholar 

  16. Mascolo, G. and Mascolo, M.C., Micropor. Mesopor. Mater., 2015, vol. 214, p. 246.

    Article  CAS  Google Scholar 

  17. Sulmonetti, T.P., Pang, S.H., Claure, M.T., Lee, S., Cullen, D.A., Agrawal, P.K., and Jones, C.W., Appl. Catal. A: Gen., 2016, vol. 517, p. 187.

    Article  CAS  Google Scholar 

  18. Bertolini, G.R., Jiménez-Gómez, C.P., Cecilia, J.A., and Maireles-Torres, P., Catalysts, 2020, vol. 10, no. 5, p. 486.

    Article  CAS  Google Scholar 

  19. Wu, J., Gao, G., Li, J., Sun, P., Long, X., and Li, F., Appl. Catal. B: Environ., 2017, vol. 203, p. 227.

    Article  CAS  Google Scholar 

  20. Wang, T., Hu, A., Wang, H., and Xia, Y., J. Chin. Chem. Soc., 2019, vol. 66, no. 12, p. 1610.

    Article  CAS  Google Scholar 

  21. Shao, Y., Wang, J., Sun, K., Gao, G., Li, C., Zhang, L., Zhang, S., Xu, L., Hu, G., and Hu, X., Renewable Energy, 2021, vol. 170, p. 1114.

    Article  CAS  Google Scholar 

  22. Rudolf, C., Dragoi, B., Ungureanu, A., Chirieac, A., Royer, S., Nastro, A., and Dumitriu, E., Catal. Sci. Technol., 2014, vol. 4, no. 1, p. 179.

    Article  CAS  Google Scholar 

  23. Biabani-Ravandi, A., Rezaei, M., and Fattah, Z., Proc. Saf. Environ. Prot., 2013, vol. 91, no. 6, p. 489.

    Article  CAS  Google Scholar 

  24. Stepanova, L.N., Belskaya, O.B., Vasilevich, A.V., Leont’eva, N.N., Baklanova, O.N., and Likholobov, V.A, Kinet. Catal., 2018, vol. 59, no. 4, p. 521.

    Article  CAS  Google Scholar 

  25. Lee, S.-B., Ko, E.-H., Park, J.Y., and Oh, J.-M., Nanomaterials, 2021, vol. 11, no. 5, p. 1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bukhtiyarova, M.V., J. Solid State Chem., 2018, vol. 269, p. 494.

    Article  Google Scholar 

  27. Tongamp, W., Zhang, Q., and Saito, F., Powder Technol., 2008, vol. 185, no. 1, p. 43.

    Article  CAS  Google Scholar 

  28. Khusnutdinov, V.P. and Isupov, V.P., Inorg. Mater., 2008, vol. 44, no. 3, p. 263.

    Article  CAS  Google Scholar 

  29. Stepanova, L.N., Kobzar, E.O., Leont’eva, N.N., Gulyaeva, T.I., Vasilevich, A.V., Babenko, A.V., Serkova, A.N., Salanov, A.N., and Belskaya, O.B., J. Alloys Compd., 2021, vol. 890, p. 161902.

    Article  Google Scholar 

  30. Wang, B., Qu, J., Li, X., He, X., and Zhang, Q., J. Am. Ceram. Soc., 2016, vol. 99, no. 9, p. 2882.

    Article  CAS  Google Scholar 

  31. Zhang, X. and Li, S., Appl. Surf. Sci., 2013, vol. 274, p. 158.

    Article  CAS  Google Scholar 

  32. Zhu, J., Zeng, B., Mo, L., Jin, F., Deng, M., and Zhang, Q., Appl. Clay Sci., 2021, vol. 206, p. 106070.

    Article  CAS  Google Scholar 

  33. Ay, A.N., Zümreoglu-Karan, B., and Mafra, L., Z. Anorg. Allg. Chem., 2009, vol. 635, no. 9, p. 1470.

    Article  CAS  Google Scholar 

  34. Teodorescu, F., Slabu, A.I., Pavel, O.D., and Zăvoianu, R., Catal. Commun., 2019, vol. 133, p. 105829.

    Article  Google Scholar 

  35. Kobzar, E.O., Stepanova, L.N., Leont’eva, N.N., and Belskaya, O.B., AIP Conf. Proc., 2020, vol. 2310, p. 030010.

    Article  Google Scholar 

  36. Ferencz, Z., Kukovecz, Á., Kónya, Z., Sipos, P., and Pálinkó, I., Appl. Clay Sci., 2015, vol. 112, p. 94.

    Article  Google Scholar 

  37. Ferencz, Z., Szabados, M., Adok-Sipiczki, M., Kukovecz, Á., Kónya, Z., Sipos, P., and Pálinkó, I., J. Mater. Sci., 2014, vol. 49, no. 24, p. 8478.

    Article  CAS  Google Scholar 

  38. Qu, J., He, X., Chen, M., Huang, P., Zhang, Q., and Liu, X., J. Solid State Chem., 2017, vol. 250, p. 1.

    Article  CAS  Google Scholar 

  39. Qu, J., He, X., Li, X., Ai, Z., Li, Y., Zhang, Q., and Liu, X., RSC Adv., 2017, vol. 7, no. 50, p. 31466.

    Article  CAS  Google Scholar 

  40. Ferencz, Z., Szabados, M., Varga, G., Csendes, Z., Kukovecz, Á., Kónya, Z., Carlson, S., Sipos, P., and Pálinkó, I., J. Solid State Chem., 2016, vol. 233, p. 236.

    Article  CAS  Google Scholar 

  41. Qu, J., He, X., Chen, M., Hu, H., Zhang, Q., and Liu, X., Mater. Chem. Phys., 2017, vol. 191, p. 173.

    Article  CAS  Google Scholar 

  42. Qu, J., He, X., Wang, B., Zhong, L., Wan, L., Li, X., Song, S., and Zhang, Q., Appl. Clay Sci, 2016, vol. 120, p. 24.

    Article  CAS  Google Scholar 

  43. Stepanova, L.N., Belskaya, O.B., Gulyaeva, T.I., Leont’eva, N.N., Salanov, A.N., and Likholobov, V., Catal. Today, 2019, vol. 357, p. 638.

    Article  Google Scholar 

  44. Stepanova, L.N., Belskaya, O.B., Baklanova, O.N., Vasilevich, A.V., and Likholobov, V.A., Procedia Eng., 2016, vol. 152, p. 672.

    Article  CAS  Google Scholar 

  45. Stepanova, L.N., Mironenko, R.M., Kobzar, E.O., Leont’eva, N.N., Gulyaeva, T.I., and Vasilevich, A.V., Salanov, and Lavrenov, A.V., ACS Sustain. Chem. Eng., 2022, vol. 3, no. 4, p. 400.

    Google Scholar 

  46. Wang, Y., Miao, Y., Li, S., Gao, L., and Xiao, G., Mol. Catal., 2017, vol. 436, p. 128.

    Article  CAS  Google Scholar 

  47. Chen, X., Li, H., Luo, H., and Qiao, M., Appl. Catal., A, 2002, vol. 233, no. 1, p. 13.

  48. Arnoldy, P. and Moulijn, J.A., J. Catal., 1985, vol. 93, no. 1, p. 38.

    Article  CAS  Google Scholar 

  49. Ribet, S., Tichit, D., Coq, B., Ducourant, B., and Morato, F., J. Solid State Chem., 1999, vol. 142, no. 2, p. 382.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.V. Muromtsev for the study of samples by XRD analysis and to O.B. Bel’skaya for valuable comments on the material. The experiments were performed using the equipment of the Center for Collective Use “National Center for the Study of Catalysts” and the Omsk Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences.

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation and performed within the framework of a state contract of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. AAAA-A21-121011890074-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. O. Kobzar or L. N. Stepanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: FA, furfuryl alcohol; LDH, layered double hydroxides; XRD, X-ray diffraction analysis; BET, Brunauer–Emmett–Teller method; SBET, BET specific surface area; Vads, adsorption (total) pore volume; D, average pore diameter; TPR, temperature-programmed reduction; TEM, transmission electron microscopy; X, conversion of furfural; S, selectivity for product formation; PSDC, pore size distribution curve; FFT, fast Fourier transform technique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobzar, E.O., Stepanova, L.N., Leont’eva, N.N. et al. Effect of the Composition and Synthesis Procedure of Catalysts Based on CoAl Hydroxides on Their Properties in Furfural Hydrogenation. Kinet Catal 64, 473–483 (2023). https://doi.org/10.1134/S0023158423040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423040043

Keywords:

Navigation