Skip to main content
Log in

Carbon Catalyst Support Modification by Nitrogen via Nitric Oxide Treatment

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A method was proposed to modify the Sibunit carbon material by treatment with NO under static reactor conditions. It was shown that the composition and content of nitrogen- and oxygen-containing functional groups are determined by the treatment conditions, namely: temperature and duration, which makes it possible to control the result of modification. Features of the modification of Sibunit with NO were studied by X-ray photoelectron spectroscopy and N2 adsorption. A mechanism was put forward for the modification of Sibunit by etching carbon layers with NO through the transformation of oxygen-containing functional groups into NOx groups (–NO and –NO2) and further into pyridine and pyrrole groups. The developed procedure for introducing nitrogen into the carbon material is easy to implement, which is important for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Serp, P. and Machado, B., Nanostructured Carbon Materials for Catalysis, Cambridge: RSC, 2015, vol. 23, p. 1.

    Google Scholar 

  2. Nartova, A.V., Kovtunova, L.M., Khudorozhkov, A.K., Shefer, K.I., Shterk, G.V., Kvon, R.I., and Bukhtiyarov, V.I., Appl. Catal. A: Gen., 2018, vol. 566, p. 174.

    Article  CAS  Google Scholar 

  3. Dmitrachkov, A.M., Kvon, R.I., and Nartova, A.V., Appl. Surf. Sci., 2021, vol. 566, p. 150631.

    Article  CAS  Google Scholar 

  4. Zhou, Y., Neyerlin, K., Olson, T.S., Pylypenko, S., Bult, J., Dinh, H.N., and O’Hayre, R., Energy Environ. Sci., 2010, no. 3, p. 1437.

  5. Ramli, Z.A.C. and Kamarudin, S.K., Nanoscale Res. Lett., 2018, vol. 13, p. 410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mirabile Gattia, D., Antisari, M.V., Giorgi, L., Marazzi, R., Piscopiello, E., Montone, A., Bellitto, S., Licoccia, S., and Traversa, E., J. Power Sources, 2009, vol. 194, p. 243.

    Article  CAS  Google Scholar 

  7. Figueiredo, J.L. and Pereira, M.F.R., Carbon Materials for Catalysis, New York: John Wiley and Sons, 2008, p. 177.

    Google Scholar 

  8. Pakhomov, N.A., Nauchnye osnovy prigotovleniya katalizatorov: vvedenie v teoriyu i praktiku (Scientific Basis for the Preparation of Catalysts: An Introduction to Theory and Practice), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 2011.

  9. Plaskin, V., Baklanova, O.N., Lavrenov, A.V., and Likholobov, V.A., Solid Fuel Chem., 2014, vol. 48, no. 6, p. 349.

    Article  Google Scholar 

  10. Plaksin, G.V., Baklanova, O.N., Lavrenov, A.V., and Likholobov, V.A., Khim. Tverd. Topl., 2014, vol. 48, no. 6, p. 349.

    CAS  Google Scholar 

  11. Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Inst. Katal. Sib. Otd. Ross. Akad. Nauk, 1995.

  12. Godina, L.I., Kirilin, A.V., Tokarev, A.V., Simakova, I.L., and Murzin, D.Y., Ind. Eng. Chem. Res., 2018, vol. 57, no. 6, p. 2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simakova, O.A., Simonov, P.A., Romanenko, A.V., and Simakova, I.L., React. Kinet. Catal. Lett., 2008, vol. 95, no. 1, p. 3.

    Article  CAS  Google Scholar 

  14. Cermignani, W., Paulson, T.E., Onneby, C., and Pantano, C.G., Carbon, 1995, vol. 33, no. 4, p. 367.

    Article  CAS  Google Scholar 

  15. Nie, R., Bo, X., Luhana, C., Nsabimana, A., and Guo, L., Int. J. Hydrogen Energy, 2014, vol. 39, no. 24, p. 12597.

    Article  CAS  Google Scholar 

  16. Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., Zhou, X., Chen, X., and Huang, S., ACS Nano, 2012, vol. 6, no. 1, p. 205.

    Article  CAS  PubMed  Google Scholar 

  17. Chesnokov, V.V., Lisitsyn, A.S., Sobolev, V.I., Gerasimov, E.Yu., Prosvirin, I.P., Chesalov, Yu.A., Chichkan, A.S., and Podyacheva, O.Yu., Kinet. Catal., 2021, vol. 62, no. 4, p. 518.

    Article  CAS  Google Scholar 

  18. Suslova, E.V., Savilov, S.V., Egorov, A.V., and Lunin, V.V., Kinet. Catal., 2019, vol. 60, no. 1, p. 87.

    Article  CAS  Google Scholar 

  19. Suboch, A.N., Evtushok, V.Yu., Kibis, L.S., Kholdeeva, O.A., and Podyacheva, O.Yu., Kinet. Catal., 2021, vol. 62, no. 2, p. 288.

    Article  CAS  Google Scholar 

  20. Wang, H., Maiyalagan, T., and Wang, X., ACS Catal., 2012, vol. 2, no. 5, p. 781.

    Article  CAS  Google Scholar 

  21. Droppa, R., Hammer, P., Carvalho, A.C.M., and Alvarez Dos Santos, M.C., J. Non-Cryst. Solids, 2002, vol. 299.

  22. Favaro, M., Agnoli, S., Perini, L., Durante, C., Gennaro, A., and Granozzi, G., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 2923.

    Article  CAS  PubMed  Google Scholar 

  23. Shi, W., Wu, K.-H., Xu, J., Zhang, Q., Zhang, B., and Su, D.S., Chem. Mater., 2017, vol. 29, no. 20, p. 8670.

    Article  CAS  Google Scholar 

  24. Paraknowitsch, J.P., Thomas, A., and Antonietti, M., J. Mater. Chem., 2010, vol. 20, p. 6746.

    Article  CAS  Google Scholar 

  25. Tuaev, X., Paraknowitsch, J.P., Illgen, R., Thomas, A., and Strasser, P., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 6444.

    Article  PubMed  Google Scholar 

  26. Brodie, B.C., Ann. Chim. Phys., 1860, vol. 59, p. 466.

    Google Scholar 

  27. Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, no. 6, p. 1339.

    Article  CAS  Google Scholar 

  28. Staudenmaier, L., Berichte der Deutschen Chemischen Gesellschaft, 1898, vol. 31, p. 1481.

    Article  CAS  Google Scholar 

  29. Bandosz, T.J. and Ania, C.O., Activated Carbon Surfaces in Environmental Remediation, Oxford: Elsevier, 2006.

    Google Scholar 

  30. Ayiania, M., Smith, M., Hensley, A.J.R., Scudiero, L., McEwen, J.-S., and Garcia-Perez, M., Carbon, 2020, vol. 162, p. 528.

    Article  CAS  Google Scholar 

  31. Moulder, J.F., Stckle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-Ray Photoelectron Spectroscopy, Eden Prairie, MN: Perkin-Elmer, 1992.

    Google Scholar 

  32. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, Cambridge, MA: Academic Press, 1982, 2nd ed.

    Google Scholar 

  33. Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to the Physical Chemistry of the Formation of the Supramolecular Structure of Adsorbents and Catalysts), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 2002.

  34. Dementjev, A.P., de Graaf, A., van de Sanden, M.C.M., Maslakov, K.I., Naumkin, A.V., and Serov, A.A., Diam. Relat. Mater., 2000, vol. 9, no. 11, p. 1904.

    Article  CAS  Google Scholar 

  35. Ma, H.A., Jia, X.P., Chen, L.X., Zhu, P.W., Guo, W.L., Guo, X.B., and Bex, P., J. Phys.: Condens. Matter, 2002, vol. 14, p. 11269.

    CAS  Google Scholar 

  36. Xu, Y., Mo, Y.P., Tian, J., Wang, P., Yu, H.G., and Yu, J.G., Appl. Catal. B: Environ., 2016, vol. 181, p. 810.

    Article  CAS  Google Scholar 

  37. Kuntumalla, M.K., Attrash, M., Akhvlediani, R., Michaelson, S., and Hoffman, A., Appl. Surf. Sci., 2020, vol. 25, p. 146562.

    Article  Google Scholar 

  38. Sui, Y., Zhu, B., Zhang, H., Shu, H., Chen, Z., Zhang, Y., and Liu, X., Carbon, 2015, vol. 81, p. 814.

    Article  CAS  Google Scholar 

  39. Inagaki, M., Toyoda, M., Soneda, Y., and Morishita, T., Carbon, 2018, vol. 132, p. 104.

    Article  CAS  Google Scholar 

  40. Lindberg, B.J. and Hedman, J., Chem. Scr., 1975, vol. 7, no. 4, p. 155.

    CAS  Google Scholar 

  41. Chen, C.-M., Zhang, Q., Yang, M.-G., Huang, C.-H., Yang, Y.-G., and Wang, M.-Z., Carbon, 2012, vol. 50, p. 3572.

    Article  CAS  Google Scholar 

  42. Oh, Y.J., Yoo, J.J., Kim, Y.I., Yoon, J.K., Yoon, H.N., Kim, J.H., and Park, S.B., Electrochim. Acta, 2014, vol. 116, p. 118.

    Article  CAS  Google Scholar 

  43. Folkesson, B. and Sundberg, P., Spectrosc. Lett., 1987, vol. 20, no. 3, p. 193.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation under a state assignment for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia (project AAAA-A21-121011390011-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nartova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Abbreviations and notation: XPS, X-ray photoelectron spectroscopy; Eb, binding energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nartova, A.V., Ananina, A.A., Semikolenov, S.V. et al. Carbon Catalyst Support Modification by Nitrogen via Nitric Oxide Treatment. Kinet Catal 64, 466–472 (2023). https://doi.org/10.1134/S0023158423040080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423040080

Keywords:

Navigation