Skip to main content
Log in

Catalysts for Liquid-Phase Oxidation of Organic Compounds with Hydrogen Peroxide: Homogeneous and Phase Transfer Systems

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The review presents a comparative analysis of promising homogeneous metal complex catalysts and the results of studies on the synthesis and determination of the structural characteristics of efficient catalysts for the oxidation of organic compounds with hydrogen peroxide Q3{PO4[WO(O2)2]4} (Q is the quaternary ammonium cation) by EXAFS, SAXS, NMR, Raman, and IR spectroscopy. The possibilities of using bifunctional homogeneous peroxopolyoxo metal complexes in combination with organic cations having quaternized nitrogen under conditions of phase transfer catalysis were considered using as an example the oxidation of organic compounds of various classes with hydrogen peroxide, forming aliphatic and aromatic epoxides, mono- and dicarboxylic acids, as well as biologically active compounds for medical and agroindustrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. The reaction rate (W) was determined based on the slope of the tangent line to the curve of PMIDA N-oxide formation.

  2. 2-Hydroxyoreoselone (2-hydroxy-2-(1-methylethyl)-7H-furo[3,2-g] [1]benzopyrane-3,7-dione). 1Н NMR spectrum (δ, ppm): 0.80 d, 0.98 d (6 Н, 2СН3, J = 6.8 Hz), 2.11 septet (1 H, J = 6.8 Hz), 3.89 s (OH), 6.37 d (1 H, НС=СН, J = 9.6 Hz), 7.13 s (1 H, С=СH), 7.98 d (1 H, НС=СН, J = 9.6 Hz), 8.05 (1 H, С=СH). 13С NMR spectrum (δC, ppm): 15.35 q, 1578 q (2 СН3), 33.50 d (СН(СН3)2), 99.97 d (С=СH–С), 109.02 s (СН=С=СH), 113.73 d (НС=СН–СО), 114.18 s (СН=С–СО), 117.49 s (ОН–С–Pri), 125.35 d (С=СН–С), 144.13 d (С–СН=СН), 159.41 s (СО–О), 162.42 s (СН=С–О), 171.27 s (СН=С–О), 198.03 s (НОС–СО–С).

REFERENCES

  1. Pennemann, H., Watts, P., Haswell, S.J., Hessel, V., and Löwe, H., Org. Proc. Res. Dev., 2004, vol. 8, no. 3, p. 422.

    Article  CAS  Google Scholar 

  2. Makarshin, L.L., Pai, Z.P., and Parmon, V.N., Russ. Chem. Rev., 2016, vol. 85, no. 2, p. 139.

    Article  CAS  Google Scholar 

  3. Beletskaya, I.P. and Ananikov, V.P., Russ. J. Org. Chem., 2015, vol. 51, no. 2, p. 145.

    Article  CAS  Google Scholar 

  4. Parmon, V.N. and Adonin, N.Yu., Russ. J. Org. Chem., 2015, vol. 51, no. 5, p. 753.

    Article  CAS  Google Scholar 

  5. Ananikov, V.P., Khemchyan, L.L., Ivanova, Yu.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko A.V., Nuriev, V.N., Dilman, A.D., Levin, V.V., Koptyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Likholobov, V.A., et al., Russ. Chem. Rev., 2014, vol. 83, no. 10, p. 885.

    Article  Google Scholar 

  6. Politanskaya, L.V., Selivanova, G.A., Panteleeva, E.V., Tretyakov, E.V., Platonov, V.E., Nikul’shin P.V., Vinogradov, A.S., Zonov, Y.V., Karpov, V.M., Mezhenkova, T.V., Vasilyev, A.V., Koldobskii, A.B., Shilova, O.S., Morozova, S.M., Burgart, Y.V., et al., Russ. Chem. Rev., 2019, vol. 88, no. 5, p. 425.

    Article  CAS  Google Scholar 

  7. Wang, S.-S. and Yang, G.-Y., Chem. Rev., 2015, vol. 115, no. 11, p. 4893.

    Article  CAS  PubMed  Google Scholar 

  8. Pope, M.T., in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Washington, DC: Georgetown University, 2013, p. 44.

    Google Scholar 

  9. Heravi, M. and Bamoharram, F., Heteropolyacids as Highly Efficient and Green Catalysts Applied in Organic Transformations, Amsterdam: Elsevier, 2022, p. 388.

    Google Scholar 

  10. Althikrallah, H., Kozhevnikova, E.F., and Kozhevnikov, I.V., RSC Adv., 2022, vol. 12, no. 4, p. 2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matveev, K.I., Zhizhina, E.G., Odyakov, V.F., and Parmon, V.N., Izv. Akad. Nauk, Ser. Khim., 1994, no. 7, p. 1208.

  12. Zhizhina, E.G., Gogin, L.L., Rodikova, Y.A., and Bukhtiyarov, V.I., Kinet. Catal., 2021, vol. 62, no. 2, p. 197.

    Article  CAS  Google Scholar 

  13. Hill, C.L., in Polyoxometalates: Reactivity, In Comprehensive Coordination Chemistry II: Transition Metal Groups 3–6, New York: Elsevier Science, 2004, vol. 4, p. 679.

    Google Scholar 

  14. Zhizhina, E.G., Odyakov, V.F., and Simonova, M.V., Kinet. Katal., 2008, vol. 49, no. 6, p. 773.

    Article  CAS  Google Scholar 

  15. Gogin, L.L., Zhizhina, E.G., and Pai, Z.P., Kinet. Catal., 2019, vol. 60, no. 1, p. 69.

    Article  CAS  Google Scholar 

  16. Gao, Y., Julião, D., Silva, D.F., de Castro, B., Zhao, J., and Balula, S.S., Mol. Cat., 2021, vol. 505, p. 111515.

    CAS  Google Scholar 

  17. Julião, D., Gomes, A.C., Cunha-Silva, L., Valenca, R., Ribeiro, J.C., Pillinger, M., de Castro, B., Gonçalves, I.S., and Balula, S.S., Appl. Catal. A: Gen., 2020, vol. 589, p. 117154.

    Article  Google Scholar 

  18. Santos, I.C.M.S., Balula, S.S., Simões, M.M.Q., Cunha-Silva, L., Graca, M., Neves, P.M.S., de Castro, B., Cavaleiro, A.M.V., and Cavaleiro, J.A.S., Catal. Today, 2013, vol. 203, p. 87.

    Article  CAS  Google Scholar 

  19. Santos, I.C.M.S., Almeida Paz, F.A., Simões, M.M.Q., Neves, M.G.P.M.S., Cavaleiro, J.A.S., Klinowskic, J., and Cavaleiro, A.M.V., Appl. Catal. A: Gen., 2008, vol. 351, no. 2, p. 166.

    Article  CAS  Google Scholar 

  20. Venturello, C., Alneri, E., and Ricci, M., J. Org. Chem., 1983, vol. 48, p. 3831.

    Article  CAS  Google Scholar 

  21. Venturello, C., D’Aloisio, R., Bart, J.C.J., and Ricci, M., J. Mol. Catal. A: Chem., 1985, vol. 32, p. 107.

    Article  CAS  Google Scholar 

  22. Venturello, C. and Ricci, M., J. Org. Chem., 1986, vol. 51, p. 1599.

    Article  CAS  Google Scholar 

  23. Matoba, Y., Inoue, H., Akagi, J., Okabayashi, T., Ishii, Y., and Ogawa, M., Synth. Commun., 1984, vol. 14, p. 865.

    Article  CAS  Google Scholar 

  24. Ishii, Y., Yamawaki, K., Ura, T., Yamada, H., Yoshida, T., and Ogawa, M., J. Org. Chem., 1988, vol. 53, no. 15, p. 3587.

    Article  CAS  Google Scholar 

  25. Sakaguchi, S., Nishiyama, Y., and Ishii, Y., J. Org. Chem., 1996, vol. 61, p. 5307.

    Article  CAS  Google Scholar 

  26. Kozhevnikov, I.V., Chem. Rev., 1998, vol. 98, p. 171.

    Article  CAS  PubMed  Google Scholar 

  27. Noyori, R., Aoki, M., and Sato, K., Chem. Commun., 2003, no. 16, p. 1977.

  28. Amini, M., Haghdoost, M.M., and Bagherzadeh, M., Coord. Chem. Rev., 2014, vol. 268, p. 83.

    Article  CAS  Google Scholar 

  29. Yufit, S.S., Mekhanizm mezhfaznogo kataliza (Mechanism of Interfacial Catalysis), Moscow: Nauka, 1984.

  30. Yanovskaya, L.A. and Yufit, S.S., Organicheskii sintez v dvukhfaznykh sistemakh (Organic Synthesis in Two-Phase Systems), Moscow: Khimiya, 1982.

  31. Gibson, N.A. and Hosking, J.N., Aust. J. Chem., 1965, vol. 18, no. 1, p. 123.

    Article  CAS  Google Scholar 

  32. Starks, C.M., J. Am. Chem. Soc., 1971, vol. 93, no. 1, p. 195.

    Article  CAS  Google Scholar 

  33. Phase-Transfer Catalysis, Starks, C.M., Ed., Dordrecht: Springer, 1991.

    Google Scholar 

  34. Ostrovskii, V.A., Soros. Obraz. Zh., 2000, vol. 6, no. 11, p. 30.

    Google Scholar 

  35. Sheldon, R.A., Chem. Ind., 1992, p. 903.

  36. Payne, G.B. and Williams, P.H., J. Org. Chem., 1959, vol. 24, p. 54.

    Article  CAS  Google Scholar 

  37. Bregeault, J.-M., Vennat, M., Salles, L., Piquemal, J.-Y., Mahha, Y., Briot, E., Bakala, P.C., Atlamsani, A., and Thouvenot, R., J. Mol. Catal. A: Chem., 2006, vol. 250, p. 177.

    Article  CAS  Google Scholar 

  38. Duncan, D.C., Chambers, R.C., Hecht, E., and Hill, C.L., J. Am. Chem. Soc., 1995, vol. 117, no. 2, p. 681.

    Article  CAS  Google Scholar 

  39. Venturello, C. and D’Aloisio, R., J. Org. Chem., 1988, vol. 53, p. 1553.

    Article  CAS  Google Scholar 

  40. Salles, L., Aubry, C., Touvenot, R., Robert, F., Chottard, G., Thouvenot, R., Ledon, H., and Bregeault, J.M., New J. Chem., 1993, vol. 17, no. 5, p. 367.

    CAS  Google Scholar 

  41. Timofeeva, M.N., Pai, Z.P., Tolstikov, A.G., Kustova, G.N., Selivanova, N.V., Berdnikova, P.V., Brylyakov, K.P., Shangina, A.B., and Utkin, V.A., Russ. Chem. Bull., 2003, vol. 52, no. 2, p. 480.

    Article  CAS  Google Scholar 

  42. Pai, Z.P., Kochubey, D.I., Berdnikova, P.V., Kanazhevskiy, V.V., Prikhod’ko, I.Yu., and Chesalov, Yu.A., J. Mol. Catal. A: Chem., 2010, vol. 332, nos. 1–2, p. 122.

    Article  CAS  Google Scholar 

  43. Aubry, C., Chottard, G., Platzer, N., Bregeault, J.-M., Thouvenot, R., Chauveau, F., Huet, C., and Ledon, H., Inorg. Chem., 1991, vol. 30, no. 23, p. 4409.

    Article  CAS  Google Scholar 

  44. Vol’nov, I.I., Peroksokompleksy khroma, molibdena, vol’frama (Peroxo Complexes of Chromium, Molybdenum, Tungsten), Moscow: Nauka, 1989.

  45. Pai, Z.P., Tolstikov, A.G., Berdnikova, P.V., Kustova, G.N., Khlebnikova, T.B., Selivanova, N.V., Shangina, A.B., and Kostrovskii, V.G., Izv. Akad. Nauk, Ser. Khim., 2005, no. 8, p. 1794.

  46. Kochubey, D.I., Berdnikova, P.V., Pai, Z.P., Chesalov, Yu.A., Kanazhevskiy, V.V., and Khlebnikova, T.B., J. Mol. Catal. A: Chem., 2013, vol. 366, p. 341.

    Article  CAS  Google Scholar 

  47. Voloshin, Y.Z., Varzatskii, O.A., Kochubey, D.I., Vorontsov, I.I., and Bubnov, Y.N., Inorg. Chim. Acta, 2009, vol. 362, no. 1, p. 149.

    Article  CAS  Google Scholar 

  48. Rehr, J.J. and Ankudinov, A.L., Radiat. Phys. Chem., 2004, vol. 70, nos. 1–3, p. 453.

    Article  CAS  Google Scholar 

  49. Porai-Koshits, M.A. and Atovmyan, L.O., Kristallokhimiya i stereokhimiya koordinatsionnykh soedinenii molibdena (Crystal Chemistry and Stereochemistry of Coordination Compounds of Molybdenum), Moscow: Nauka, 1974.

  50. Kochubei, D.I., EXAFS-Spektroskopiya Katalizatorov (EXAFS Spectroscopy of Catalysts), Novosibirsk: Nauka, 1992.

  51. Pai, Z.P., Chesalov, Yu.A., Berdnikova, P.V., Uslamin, E.A., Yushchenko, D.Yu., Uchenova, Yu.V., Khlebnikova, T.B., Baltakhinov, V.P., Kochubey, D.I., and Bukhtiyarov, V.I., Appl. Catal. A: Gen., 2020, vol. 604, p. 117786.

    Article  CAS  Google Scholar 

  52. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A.Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., et al., Gaussian 98 (Revision A.1x), Pittsburgh, PA: Gaussian, Inc., 2001.

  53. Baltakhinov, V.P., Yurchenko, E.N., and Podosenin, A.V., J. Mol. Catal. A: Chem., 2000, vol. 158, no. 1, p. 399.

    Article  CAS  Google Scholar 

  54. Larichev, Yu.V., Selivanova, N.V., Berdnikova, P.V., Tuzikov, F.V., and Pai, Z.P., J. Struct. Chem., 2020, vol. 61, no. 10, p. 1568.

    Article  CAS  Google Scholar 

  55. Larichev, Y.V., Selivanova, N.V., Berdnikova, P.V., and Pai Z.P., J. Struct. Chem., 2022, vol. 63, p. 1215.

    Article  CAS  Google Scholar 

  56. Svergun, D.I. and Feigin, L.A., Rentgenovskoe i neytronnoe malouglovoe rasseyanie (Structure Analysis by Small-Angle X-Ray and Neutron Scattering), Moscow: Nauka, 1986.

  57. Furukawa, H., Nakamura, T., Inagaki, H., Nishikawa, E., Imai, C., and Misono, M., Chem. Lett., 1988, vol. 17, no. 5, p. 877.

    Article  Google Scholar 

  58. Lee, K.-Y., Itoh, K., Hashimoto, M., Mizuno, N., and Misono, M., Stud. Surf. Sci. Catal., 1994, vol. 82, p. 583.

    Article  CAS  Google Scholar 

  59. Valentin, C.D., Gisdakis, P., Yudanov, I.V., and Rosch, N., J. Org. Chem., 2000, vol. 65, no. 10, p. 2996.

    Article  Google Scholar 

  60. Jahier, C., Mal, S.S., Al-Oweini, R., Kortz, U., and Nlate, S., Polyhedron, 2013, vol. 57, p. 57.

    Article  CAS  Google Scholar 

  61. Pai, Z.P., Yushchenko, D.Y., Khlebnikova, T.B., and Parmon, V.N., Catal. Commun., 2015, vol. 71, p. 102.

    Article  CAS  Google Scholar 

  62. Espenson, J.H., Zhu, Z., and Zauche, T.H., J. Org. Chem., 1999, vol. 64, no. 4, p. 1191.

    Article  CAS  Google Scholar 

  63. Pai, Z.P., Parmon, V.N., Beskopyl’nyi, A.M., Berdnikova, P.V., and Tuchapskaya, D.P., RF Patent 2335341, 2008.

  64. Parmon, V.N., Pai, Z.P., Oleneva, P.V., Berdnikova, P.V., and Malysheva, L.V., RF Patent 2554000, 2015.

  65. Bukhtiyarov, V.I., Pai, Z.P., Tuchapskaya, D.P., Selivanova, N.V., Klimenko, A.S., Berdnikova, P.V., and Tertishnikov, I.V., RF Patent 2697582, 2019.

  66. Sheldon, R.A., Arends, I.W.C.E., and Dijksman, A., Catal. Today, 2000, vol. 57, nos. 1–2, p. 157.

    Article  CAS  Google Scholar 

  67. Sheldon, R.A., Chemtech, 1991, vol. 21, no. 9, p. 566.

    CAS  Google Scholar 

  68. Sheldon, R.A., Top. Curr. Chem., 1993, vol. 164, p. 21.

    Article  CAS  Google Scholar 

  69. Selivanova, N.V., Berdnikova P.V., and Pai Z.P., Catal. Indust., 2021, vol. 13, no. 2, p. 111.

    Article  Google Scholar 

  70. Antonelli, E., D’Aloisio, R., Fiorani, T., and Venturello, C., J. Org. Chem., 1998, vol. 63, no. 21, p. 7190.

    Article  CAS  PubMed  Google Scholar 

  71. Sato, K., Aoki, M., and Noyory, R., Science, 1998, vol. 281, no. 5383, p. 1646.

    Article  CAS  PubMed  Google Scholar 

  72. Pai, Z.P., Selivanova, N.V., Oleneva, P.V., Berdnikova, P.V., and Beskopyl’nyi, A.M., Catal. Commun., 2017, vol. 88, p. 45.

    Article  CAS  Google Scholar 

  73. Guo, M.-L., Green Chem., 2004, vol. 6, no. 6, p. 271.

    Article  CAS  Google Scholar 

  74. Venturello, C., J. Org. Chem., 1991, vol. 56, no. 20, p. 5924.

    Article  CAS  Google Scholar 

  75. Mrowca, J.J., US Patent 3906015, 1975.

  76. Mrowca, J.J., US Patent 4257973, 1981.

  77. Lakeev, S.N., Karchevskii, S.G., Maidanova, I.O., and Aleksashev, V.I., Sb. mater. mezhregional’noi nauchno-praktich. konf. “Innovatsionnye protsessy v oblasti obrazovaniya, nauki i proizvodstva” (Proc. Interregional Scientific and Practical Conference “Innovative Processes in the Field of Education, Science and Production”), Nizhnekamsk, 2004. http://chemteq.ru/articles/olefin.html.

  78. Razumovskii, S.D. and Zaikov, G.E., Russ. Chem. Rev., 1980, vol. 49, no. 12, p. 1163.

    Article  Google Scholar 

  79. Glyants, I.R., Beresnev, V.V., Petukhov, A.A., and Klochkov, V.V., Zh. Prikl. Khim., 1993, vol. 66, no. 5, p. 1179.

    CAS  Google Scholar 

  80. Berdnikova, P.V., Selivanova, N.V., Oleneva, P.V., and Pai Z.P., Catal. Ind., 2018, vol. 10, no. 2, p. 105.

    Article  Google Scholar 

  81. Xue, J., Wang, A., Yin, H., Wang, J., Zhang, D., Chen, W., Yu, L., and Jiang, T., J. Ind. Eng. Chem., 2010, vol. 16, no. 2, p. 288.

    Article  CAS  Google Scholar 

  82. Chen, J., Hua, L., Zhu, W., Zhang, R., Guo, L., Chen, C., Gan, H., Song, B., and Hou, Zh., Catal. Commun., 2014, vol. 47, p. 18.

    Article  Google Scholar 

  83. Poli, E., Bion, N., Barrault, J., Casciato, S., Dubois, V., Pouilloux, Y., and Clacens, J.-M., Catal. Today, 2010, vol. 157, nos. 1–4, p. 371.

    Article  CAS  Google Scholar 

  84. Bi, Y.L., Zhou, M.J., Hu, H.Y., Wei, Ch.P., Li, W.X., and Zhen, K.J., React. Kinet. Catal. Lett., 2001, vol. 72, no. 1, p. 73.

    Article  CAS  Google Scholar 

  85. Pai, Z.P., Berdnikova, P.V., Nosikov, A.A., and Khlebnikov, B.M., Khim. Interesakh Ustoich. Razvit., 2008, vol. 16, no. 4, p. 421.

    CAS  Google Scholar 

  86. Pai, Z.P., Berdnikova, P.V., and Nosikov, A.A., Zh. Prikl. Khim., 2007, vol. 80, no. 12, p. 2022.

    Google Scholar 

  87. Krasnykh, E.L., Glazko, I.L., Sokolov, A.B., Levanova, S.V., and Tikhonova, I.A., Khim. Prom-st’, 2002, vol. 6, p. 53.

    Google Scholar 

  88. Svetozarskii, S.V., Feller, K.L., Samitov, Yu.Yu., Zil’berman, E.N., and Razuvaev, G.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1964, no. 1, p. 121.

  89. Creese, M.W. and Smissman, E.E., J. Org. Chem., 1976, vol. 41, no. 1, p. 169.

    Article  CAS  Google Scholar 

  90. Kataev, V.E., Issledovaniya B.A. Arbuzova v oblasti izomerizatsii i stereokhimii bitsiklicheskikh monoterpenov (B.A. Arbuzov’s Research in the Field of Isomerization and Stereochemistry of Bicyclic Monoterpenes), Kazan: Kazan. Gos. Univ., 2003.

  91. Jia, D., Wang, L., Li, C., and Wang, X., Fluid Phase Equilib., 2012, vol. 327, no. 5, p. 1.

    Article  CAS  Google Scholar 

  92. Mfuh, A.M. and Larionov, O.V., Curr. Med. Chem., 2015, vol. 22, no. 24, p. 2819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bur, S.K., Comprehensive Organic Synthesis II, Elsevier, 2014, vol. 6, p. 755.

    CAS  Google Scholar 

  94. Do Pham, D.D., Kelso, G.F., Yanga, Y., and Hearn, M.T.W., Green Chem., 2014, vol. 16, no. 3, p. 1399.

    Article  CAS  Google Scholar 

  95. Massaro, A., Mordini, A., Mingardi, A., Klein, J., and Andreotti, D., Eur. J. Org. Chem., 2011, vol. 2011, no. 2, p. 271.

    Article  Google Scholar 

  96. Ellis, G.L., O’Neil, I.A., Ramos, V.E., Cleator, E., Kalindjian, S.B., Chorlton, A.P., and Tapolczay, D.J., Tetrahedron Lett., 2007, vol. 48, no. 10, p. 1683.

    Article  CAS  Google Scholar 

  97. Larionov, O.V., Stephens, D., Mfuh, A., and Chavez, G., Org. Lett., 2014, vol. 16, no. 3, p. 864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Commandeur, C., Commandeur, M., Bathany, K., Kauffmann, B., Edmunds, A.J.F., Maienfisch, P., and Ghosez, L., Tetrahedron, 2011, vol. 67, no. 51, p. 9899.

    Article  CAS  Google Scholar 

  99. Cui, L., Peng, Y., and Zhang, L., J. Am. Chem. Soc., 2009, vol. 131, no. 24, p. 8394.

    Article  CAS  PubMed  Google Scholar 

  100. Oh, K., Li, J.-Y., and Ryu, J., Org. Biomol. Chem., 2010, vol. 8, no. 13, p. 3015.

    Article  CAS  PubMed  Google Scholar 

  101. Bull, J.A., Mousseau, J.J., Pelletier, G., and Charette, A.B., Chem. Rev., 2012, vol. 112, no. 5, p. 2642.

    Article  CAS  PubMed  Google Scholar 

  102. Yan, G., Borah, A.J., and Yang, M., Adv. Synth. Catal., 2014, vol. 356, nos. 11–12, p. 2375.

    Article  CAS  Google Scholar 

  103. Cai, X., Sha, M., Guo, Ch., and Pan, R.M., Asian J. Chem., 2012, vol. 24, no. 9, p. 3781.

    CAS  Google Scholar 

  104. Tian, J., Shi, H., Li, X., Yinc, Y., and Chen, L., Green Chem., 2012, vol. 14, no. 7, p. 1990.

    Article  CAS  Google Scholar 

  105. Fields, D.L., US Patent 5023369 (1991).

  106. Yushchenko, D.Yu., Cand. Sci. (Chem.) Dissertation, Novosibirsk, 2021.

  107. Yushchenko, D.Y., Khlebnikova, T.B., Pai, Z.P., and Bukhtiyarov, V.I., Kinet. Catal., 2021, vol. 62, no. 3, p. 331.

    Article  CAS  Google Scholar 

  108. Yushchenko, D.Y., Malysheva, L.V., Baranova, S.S., Khlebnikova, T.B., and Pai, Z.P., J. Anal. Chem., 2013, vol. 68, no. 11, p. 961.

    Article  CAS  Google Scholar 

  109. Pai, Z.P., Yushchenko, D.Yu., Khlebnikova, T.B., and Parmon, V.N., RF Patent 2618629, 2017.

  110. Yushchenko, D.Y., Pai, Z.P., and Khlebnikova, T.B., Catal. Lett., 2021, vol. 152, p. 2025.

    Article  Google Scholar 

  111. Yushchenko, D.Yu., Khlebnikova, T.B., and Pai, Z.P., Nauka Tekhnol. Sib., 2022, vol. 5, p. 89.

    Google Scholar 

  112. Yushchenko, D.Yu., Khlebnikova, T.B., Pai, Z.P., and Baranova, S.S., RF Patent 2775230, 2022.

  113. Khlebnikova, T.B., Konev, V.N., Yakovleva, E.Yu., Yushchenko, D.Yu., and Pai, Z.P., RF Patent 2753453, 2021.

  114. Achrem-Achremowicz, J. and Janeczko, Z., Wiadomosci Chemiczne, 2003, vol. 57, nos. 3–4, p. 223.

    CAS  Google Scholar 

  115. Kislitsyn, A.N., Khim. Drev., 1994, no. 3, p. 3.

  116. Sheth, K., Bianchi, E., Wiedhope, R., and Gole, J.R., J. Pharm. Sci., 1973, vol. 62, no. 1, p. 139.

    Article  CAS  PubMed  Google Scholar 

  117. Tolstikov, G.A., Flekhter, O.B., Shul’ts, E.E., Baltina, L.A., and Tolstikov, A.G., Khim. Interesah Ustoich. Razvit., 2005, no. 1, p. 1.

  118. Khlebnikova, T.B., Pai, Z.P., Kuznetsov, B.N., Mattsat, Yu.V., Kuznetsova, S.A., Berdnikova, P.V., and Skvortsova, G.P., Zh. Sib. Fed. Univ., Ser. Khim., 2008, vol. 1, no. 3, p. 277.

    Google Scholar 

  119. Kuznetsova, S.A., Kuznetsov, B.N., Red’kina, E.S., Sokolenko, V.A., and Skvortsova, G.P., RF Patent 2324700, 2008.

  120. Osadchii, S.A., Shul’ts, E.E., Shakirov, M.M., and Tolstikov, G.A., Russ. Chem. Bull., Int. Ed., 2006, vol. 55, no. 2, p. 375.

    CAS  Google Scholar 

  121. Shul’ts, E.E., Petrova, T.N., Shakirov, M.M., Chernyak, E.I., Pokrovskii, L.M., Nekhoroshev, C.A., and Tolstikov, G.A., Khim. Interesah Ustoich. Razvit., 2003, no. 4, p. 683.

  122. Ito, C., Itoigawa, M., Mishina, Y., Filho, V.C., Enjo, F., Tokuda, H., Hishino, H., and Furukawa, H., J. Nat. Prod., 2003, vol. 66, no. 3, p. 368.

    Article  CAS  PubMed  Google Scholar 

  123. Guilet, D., Helesbeux, J.J., Seraphin, D., Sevenet, T., Richomme, P., and Bruneton, J., J. Nat. Prod., 2001, vol. 64, no. 5, p. 563.

    Article  CAS  PubMed  Google Scholar 

  124. Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela Scafati, O., Blanco Molina, M., Macho, A., and Fiebich, B.L., J. Nat. Prod., 2004, vol. 67, no. 4, p. 532.

    Article  CAS  PubMed  Google Scholar 

  125. Guo, H. and Yin, G., J. Phys. Chem., vol. 115, no. 35, p. 17516.

  126. Lan, J., Lin, J., Chen, Z., and Yin, G., ACS Catal., 2015, vol. 5, no. 4, p. 2035.

    Article  CAS  Google Scholar 

  127. Saleem, F., Muller, P., Eranen, K., Warna, J., Murzin, D.Yu., and Salmi, T., J. Chem. Technol. Biotechnol., 2017, vol. 92, no. 9, p. P. 2206.

  128. Murzin, D.Yu., Bertrand, E., Tolvanen, P., Devyatkov, S., Rahkila, J., Eranen, K., Warna, J., and Salmi, T., Ind. Eng. Chem. Res., 2020, vol. 59, no. 30, p. 13516.

    Article  CAS  Google Scholar 

  129. Shcherban, N.D., Barakov, R.Yu., Sergiienko, S.A., Eranen, K., Warna, J., and Murzin, D.Yu., Catal. Lett., 2022, vol. 152, no. 10, p. 2920.

    Article  CAS  Google Scholar 

  130. Badovskaya, L.A., Latashko, V.M., Poskonin, V.V., Grunskaya, E.P., Tyukhteneva, Z.I., Rudakova, S.G., Pestunova, S.A., and Sarkisyan, A.V., Khim. Geterotsikl. Soedin., 2002, no. 9, p. 1194.

  131. Badovskaya, L.A. and Poskonin, V.V., Kinet. Catal., 2015, vol. 56, no. 2, p. 164.

    Article  CAS  Google Scholar 

  132. Ponomarenko, R.I., Cand. Sci. (Chem.) Dissertation, Krasnodar, 2003.

  133. Nguyen, B.T., Wiskur, Sh.L., and Ansliyn, E.V., Org. Lett., 2004, vol. 6, no. 15, p. 2499.

    Article  CAS  PubMed  Google Scholar 

  134. Ponomarenko, R.I., Badovskaya, L.A., and Latashko, V.M., Khim. Geterotsikl. Soedin., 2002, no. 9, p. 1204.

  135. Kassaian, J.-M., Tartaric acid, in Ulmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH, 2002.

    Google Scholar 

  136. Great Russian Encyclopedia. https://bigenc.ru/chemistry/text/1914990.

  137. Pai, Z.P., Khlebnikova, T.B., Mattsat, Y.V., and Parmon, V.N., React. Kinet. Catal. Lett., 2009, vol. 98, no. 1, p. 1.

    Article  CAS  Google Scholar 

  138. Khlebnikova, T.B., Pai, Z.P., Fedoseeva, L.A., and Mattsat, Y.V., React. Kinet. Catal. Lett., 2009, vol. 98, no. 1, p. 9.

    Article  CAS  Google Scholar 

  139. Belousov, A.S., Esipovich, A.L., Kanakov, E.A., and Otopkova, K.V., Sustainable Energy Fuels, 2021, vol. 5, no. 18, p. 4512.

    CAS  Google Scholar 

  140. Cerone, M. and Smith, T.K., Front. Nutr., 2021, vol. 8, p. 570401.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Meng, Y., Taddeo, F., Freites Aguilera, A., Cai, X., Russo, V., Tolvanen, P., and Leveneur S., Catalysts, 2021, vol. 11, no. 7, p. 765.

    Article  CAS  Google Scholar 

  142. John, G., Nagarajan, S., Kumar Vemula, P., Silverman, J.R., and Pillaid, C.K.S., Prog. Polym. Sci., 2019, vol. 92, p. 158.

    Article  CAS  Google Scholar 

  143. Afanas’ev, N.I., Makarevich, N.A., Selivanova, N.V., Selyanina, S.B., Tel’tevskaya, S.E., and Trufanova, M.V., Innovatsii, 2003, no. 4, p. 67.

  144. Pai, Z.P., Khim. Interesah Ustoich. Razvit., 2013, vol. 21, no. 3, p. 267.

    CAS  Google Scholar 

  145. Pai, Z.P. and Parmon, V.N., in Sb. nauchnykh trudov. Khimicheskie reaktivy, reagenty i protsessy malotonnazhnoi khimii (Collection of Scientific Papers. Chemical Reagents, Reagents and Processes of Low-Tonnage Chemistry), Minsk: Belorusskaya Nauka, 2008, p. 346.

  146. Pai, Z.P., Kochubei, D.I., and Parmon, V.N., in Sb. nauchnykh trudov. Khimicheskie reaktivy, reagenty i protsessy malotonnazhnoi khimii (Collection of Scientific Papers. Chemical Reagents, Reagents and Processes of Low-Tonnage Chemistry), Minsk: Belorusskaya nauka, 2011, p. 423.

  147. Uslamin, E.A., Khlebnikova, T.B., Mattsat, Y.V., and Pai, Z.P., in 22nd European Biomass Conference and Exhibition, Hamburg, Germany, 2014.

  148. Yushchenko, D.Yu., Pai, Z.P., Uchenova, Yu.V., and Khlebnikova, T.B., Kinet. Katal., 2023, vol. 64, no. 3, p. 270.

  149. Musik, M., Janus, E., Pelech, R., and Salacinski, L., Catalysts, 2021, vol. 11, no. 9, p. 1058.

    Article  CAS  Google Scholar 

  150. Egorov, M.P., Maksimov, A.L., Muzafarov, A.M., Nifant’ev, N.E., and Tsivadze, A.Yu., Vestn. Ross. Akad. Nauk, 2022, vol. 92, no. 2, p. 103.

Download references

ACKNOWLEDGMENTS

We are grateful to P.V. Berdnikova and N.V. Selivanova (Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences) for help with preparation of the material for publication and graphical presentation of the review.

Funding

The review used the materials obtained with financial support from the Russian Foundation for Basic Research (project nos. 01-03-32862, 04-03-32425, 09-03-00395а, 12-03-00173а, 16-03-00127а, 16-29-10691ofi, and 19-03-00202а); under the government contract of the Russian Academy of Sciences and Federal Agency for Scientific Organizations (FASO) (project no. V.44.2.8); with support from the Chemistry and Advanced Materials Sciences Department, Russian Academy of Sciences (project nos. 4.6.3 and 5.7.3); and from the Ministry of Science and Higher Education of the Russian Federation under the government contract at the Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences (project nos. АААА-А17-1170417100081-1 and ААА-А21-121011390007-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Pai.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and notation: EXAFS is extended X-ray absorption fine structure; SAXS, small angle X-ray scattering; NMR, nuclear magnetic resonance; IR, infrared spectroscopy; FOS, fine organic synthesis; PTC, phase transfer catalysis; HPA, heteropolyacid; QAS, quaternary ammonium salt; RDA, radial distribution of atoms; DFT, density functional theory; GC-MS, gas chromato-mass spectrometry; PMIDA, N-(phosphonomethyl)-iminodiacetic acid; TON, turnover number; TOF, turnover frequency; CS, chemical shift; SSCC, spin-spin coupling constant; a. b., absorption band; Еа, activation energy; DMF, dimethylformamide; DMSO, dimethylsulfoxide; ppm, parts per million; HPLC, high-performance liquid chromatography.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, Z.P., Parmon, V.N. & Bukhtiyarov, V.I. Catalysts for Liquid-Phase Oxidation of Organic Compounds with Hydrogen Peroxide: Homogeneous and Phase Transfer Systems. Kinet Catal 64, 329–361 (2023). https://doi.org/10.1134/S0023158423040110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423040110

Keywords:

Navigation