Skip to main content
Log in

Ceria–Zirconia Supported Platinum Catalysts for the Water-Gas Shift Reaction: The Influence of Support Composition

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The study is presented on the influence of the composition of a ceria-zirconia support on the structure and the activity in water-gas shift reaction of platinum catalysts (Pt/Ce0.75Zr0.25O2 and Pt/Ce0.4Zr0.5Y0.05La0.05O2). The structure diagnostics of the samples were performed using high-resolution transmission electron microscopy, powder X-ray diffraction, CO chemisorption and X-ray atomic pair distribution function method. It was shown that the catalysts contain highly dispersed platinum particles not exceeding 2 nm in size. Platinum particles supported on Ce0.75Zr0.25O2 are smaller due to the higher specific surface area of the support. The catalysts Pt/Ce0.75Zr0.25O2 and Pt/Ce0.4Zr0.5Y0.05La0.05O2 proved to have similar efficiency while having the same platinum content. It was assumed that the catalysts supported on Ce0.4Zr0.5Y0.05La0.05O2 demonstrate a slightly higher turnover frequency per platinum surface atom, but it is likely compensated by the difference in the supported metal particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Matus, E.V., Nefedova, D.V., Sukhova, O.B., Ismagilov, I.Z., Ushakov, V.A., Yashnik, S.A., Nikitin, A.P., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2019, vol. 60, no. 4, p. 496.

    Article  CAS  Google Scholar 

  2. Sadykov, V.A., Simonov, M.N., Bespalko, Yu.N., Bobrova, L.N., Eremeev, N.F., Arapova, M.V., Smal’, E.A., Mezentseva, N.V., and Pavlova, S.N., Kinet. Catal., 2019, vol. 60, no. 5, p. 582.

    Article  CAS  Google Scholar 

  3. Park, E.D., Lee, D., and Lee, H.C., Catal. Today, 2009, vol. 139, no. 4, p. 280.

    Article  CAS  Google Scholar 

  4. Il’ichev, A.N., Bykhovsky, M.Ya., Fattakhova, Z.T., Shashkin, D.P., Fedorova, Yu.E., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2019, vol. 60, no. 5, p. 661.

    Article  Google Scholar 

  5. Konishcheva, M.V., Svintsitskiy, D.A., Potemkin, D.I., Rogozhnikov, V.N., Sobyanin, V.A., and Snytnikov, P.V., ChemistrySelect, 2020, vol. 5, no. 3, p. 1228.

    Article  CAS  Google Scholar 

  6. Palma, V., Ruocco, C., Cortese, M., Renda, S., Meloni, E., Festa, G., and Martino, M., Metals (Basel), 2020, vol. 10, no. 7, p. 1.

    Article  Google Scholar 

  7. Pal, D.B., Chand, R., Upadhyay, S.N., and Mishra, P.K., Renewable Sustainable Energy Rev., 2018, vol. 93, p. 549.

    Article  CAS  Google Scholar 

  8. LeValley, T.L., Richard, A.R., and Fan, M., Int. J. Hydrogen Energy, 2014, vol. 39, no. 30, p. 16983.

    Article  CAS  Google Scholar 

  9. Gonzalez Castaño, M., Reina, T.R., Ivanova, S., Centeno, M.A., and Odriozola, J.A., J. Catal., 2014, vol. 314, p. 1.

    Article  Google Scholar 

  10. Ratnasamy, C. and Wagner, J., Catal. Rev. Sci. Eng., 2009, vol. 51, no. 3, p. 325.

    Article  CAS  Google Scholar 

  11. Wu, Z., Mann, A.K.P., Li, M., and Overbury S.H., J. Phys. Chem. C, 2015, vol. 119, no. 13, p. 7340.

    Article  CAS  Google Scholar 

  12. González-Castaño, M., Ivanova, S., Ioannides, T., Centeno, M.A., and Odriozola, J.A., Catal. Sci. Technol., 2017, vol. 7, no. 7, p. 1556.

    Article  Google Scholar 

  13. Li, Y., Kottwitz, M., Vincent, J.L., Enright, M.J., Liu, Z., Zhang, L., Huang, J., Senanayake, S.D., Yang, W.C.D., Crozier, P.A., Nuzzo, R.G., and Frenkel, A.I., Nat. Commun., 2021, vol. 12, no. 1, p. 1.

    Article  Google Scholar 

  14. Meira, D.M., Ribeiro, R.U., Mathon, O., Pascarelli, S., Bueno, J.M.C., and Zanchet, D., Appl. Catal. B: Environ., 2016, vol. 197, p. 73.

    Article  CAS  Google Scholar 

  15. Yuan, K., Guo, Y., Lin, Q.L., Huang, L., Ren, J.T., Liu, H.C., Yan, C.H., and Zhang, Y.W., J. Catal., 2021, vol. 394, p. 121.

    Article  CAS  Google Scholar 

  16. Lee, K.J., Kim, Y., Lee, J.H., Cho, S.J., Kwak, J.H., and Moon, H.R., Chem. Mater., 2017, vol. 29, no. 7, p. 2874.

    Article  CAS  Google Scholar 

  17. Devaiah, D., Reddy, L.H., Park, S.E., and Reddy, B.M., Catal. Rev. Sci. Eng., 2018, vol. 60, no. 2, p. 177.

    Article  CAS  Google Scholar 

  18. Mamontov, E., Egami, T., Brezny, R., Koranne, M., and Tyagi, S., J. Phys. Chem. B, vol. 104, no. 47, p. 11110.

  19. Li, J., Liu, X., Zhan, W., Guo, Y., Guo, Y., and Lu, G., Catal. Sci. Technol., 2016, vol. 6, no. 3, p. 897.

    Article  CAS  Google Scholar 

  20. Song, L., Zhu, L., and Li, L., Crystals, 2018, vol. 8, p. 261.

    Article  Google Scholar 

  21. Deshpande, P.A., Hegde, M.S., and Madras, G., Appl. Catal. B: Environ., 2010, vol. 96, nos. 1–2, p. 83.

    Article  CAS  Google Scholar 

  22. Ricote, S., Jacobs, G., Milling, M., Ji, Y., Patterson, P.M., and Davis, B.H., Appl. Catal. A: Gen., 2006, vol. 303, no. 1, p. 35.

    Article  CAS  Google Scholar 

  23. Lee, K., Knoblauch, N., Agrafiotis, C., Pein, M., Roeb, M., and Sattler, C., Open Ceram., 2022, vol. 10, p. 100269.

    Article  CAS  Google Scholar 

  24. Yuan, K., Sun, X.C., Yin, H.J., Zhou, L., Liu, H.C., Yan, C.H., and Zhang, Y.W., J. Energy Chem., 2022, vol. 67, p. 241.

    Article  CAS  Google Scholar 

  25. Li, S., Deng, J., Wang, J., Chen, Y., and Li, Y., J. Rare Earths, 2022. https://doi.org/10.1016/j.jre.2022.11.009

  26. Duarte de Farias, A.M., Nguyen-Thanh, D., and Fraga, M.A., Appl. Catal. B: Environ., 2010, vol. 93, nos. 3–4, p. 250.

    Article  CAS  Google Scholar 

  27. Sartoretti, E., Novara, C., Chiodoni, A., Giorgis, F., Piumetti, M., Bensaid, S., Russo, N., and Fino, D., Catal. Today, 2022, vols. 390–391, p. 117.

    Article  Google Scholar 

  28. Andreeva, D., Idakiev, V., Tabakova, T., Ilieva, L., Falaras, P., Bourlinos, A., and Travlos, A., Catal. Today, 2002, vol. 72, nos. 1–2, p. 51.

    Article  CAS  Google Scholar 

  29. Tabakova, T., Ilieva, L., Ivanov, I., Manzoli, M., Zanella, R., Petrova, P., and Kaszkur, Z., J. Rare Earths, 2019, vol. 37, no. 4, p. 383.

    Article  CAS  Google Scholar 

  30. Andreeva, D., Ivanov, I., Ilieva, L., Abrashev, M.V., Zanella, R., Sobczak, J.W., Lisowski, W., Kantcheva, M., Avdeev, G., and Petrov, K., Appl. Catal. A: Gen., 2009, vol. 357, no. 2, p. 159.

    Article  CAS  Google Scholar 

  31. Kaur, T., Singh, K., and Kolte, J., Mater. Today Proc., 2022. https://doi.org/10.1016/j.matpr.2022.11.331

    Book  Google Scholar 

  32. Chanapattharapol, K.C., Krachuamram, S., Kidkhunthod, P., and Poo-arporn, Y., Solid State Sci., 2020, vol. 99, p. 106066.

    Article  CAS  Google Scholar 

  33. Ballauri, S., Sartoretti, E., Hu, M., D’Agostino, C., Ge, Z., Wu, L., Novara, C., Giorgis, F., Piumetti, M., Fino, D., Russo, N., and Bensaid, S., Appl. Catal. B: Environ., 2023, vol. 320, p. 121898.

    Article  CAS  Google Scholar 

  34. Shi, J., Li, H., Genest, A., Zhao, W., Qi, P., Wang, T., and Rupprechter, G., Appl. Catal. B: Environ., 2022, vol. 301, p. 120789.

    Article  CAS  Google Scholar 

  35. Poggio-Fraccari, E., Mariño, F., Laborde, M., and Baronetti, G., Appl. Catal. A: Gen., 2013, vols. 460–461, no. 3, p. 15.

    Article  Google Scholar 

  36. Shoynkhorova, T.B., Simonov, P.A., Potemkin, D.I., Snytnikov, P.V., Belyaev, V.D., Ishchenko, A.V., Svintsitskiy, D.A., and Sobyanin, V.A., Appl. Catal. B: Environ., 2018, vol. 237, p. 237.

    Article  CAS  Google Scholar 

  37. Gorlova, A.M., Panafidin, M.A., Shilov, V.A., Pakharukova, V.P., Snytnikov, P.V., and Potemkin, D.I., Int. J. Hydrogen Energy, 2023, vol. 48, no. 32, p. 12015.

    Article  CAS  Google Scholar 

  38. Egami, T. and Billinge, S.J.L., Underneath the Bragg Peaks, Pergamon Materials Series, Amsterdam: Elsevier, 2012.

    Google Scholar 

  39. Pakharukova, V.P., Moroz, É.M., and Zyuzin, D.A., J. Struct. Chem., 2010, vol. 51, no. 2, p. 274.

    Article  CAS  Google Scholar 

  40. Moroz, E.M., Pakharukova, V.P., and Shmakov, A.N., Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrom. Detect. Assoc. Equip., vol. 603, nos. 1–2, p. 99.

  41. Qiu, X., Thompson, J.W., and Billinge, S.J.L., J. Appl. Crystallogr., 2004, vol. 37, no. 4, p. 678.

    Article  CAS  Google Scholar 

  42. Farrow, C.L., Juhas, P., Liu, J.W., Bryndin, D., Božin, E.S., Bloch, J., Proffen, T., and Billinge, S.J.L., J. Phys. Condens. Matter, 2007, vol. 19, no. 33, p. 335219.

    Article  CAS  PubMed  Google Scholar 

  43. Inorganic Crystal Structure Database (ICSD-for-WWW), Karlsruhe: Fachinformationszentrum (FIZ), 2007.

  44. Masadeh, A.S., Božin, E.S., Farrow, C.L., Paglia, G., Juhas, P., Billinge, S.J.L., Karkamkar, A., and Kanatzidis, M.G., Phys. Rev., vol. 76, no. 11, p. 115413.

  45. Kunwar, D. and Zhou, S., DeLaRiva, A., Peterson, E.J., Xiong, H., Isidro Pereira-Hernández, X., Purdy, S.C., ter Veen, R., H. Brongersma, H., Miller, J.T., Hashiguchi, H., Kovarik, L., Lin, S., Guo, H., Wang, Y., and Datye, A.K., ACS Catal., 2019, vol. 9, no. 5, p. 3978.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study of the samples by transmission electron microscopy was carried out using facilities of the shared research center “National center of investigation of catalysts” at Boreskov Institute of Catalysis. The authors also thank the shared research center VTAN NSU for providing access to the measuring equipment.

Funding

This work was supported by Russian Science Foundation under the project no. 21-73-20075 (А.М. Gorlova, V.P. Pakharukova, О.А. Stonkus, V.N. Rogozhnikov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gorlova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: WGS, water gas shift; WHSV, weight hourly space velocity; ICP-AES, inductively coupled plasma-atomic emission spectroscopy; XRD, X-ray diffraction; CSR, coherent scattering region; PDF, pair distribution function analysis; HR TEM, high-resolution transmission electron microscopy; TPR, temperature-programmed reduction; TPD, temperature-programmed reduction; SBET, specific surface area; Vpore, total pore volume; Vmicropore, micropore volume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorlova, A.M., Pakharukova, V.P., Stonkus, O.A. et al. Ceria–Zirconia Supported Platinum Catalysts for the Water-Gas Shift Reaction: The Influence of Support Composition. Kinet Catal 64, 449–457 (2023). https://doi.org/10.1134/S0023158423040031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423040031

Keywords:

Navigation