Skip to main content
Log in

Developing Targeted Therapies for T Cell Acute Lymphoblastic Leukemia/Lymphoma

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Largely, treatment advances in relapsed and/or refractory acute lymphoblastic leukemia (ALL) have been made in B cell disease leaving T cell ALL reliant upon high-intensity chemotherapy. Recent advances in the understanding of the biology of T-ALL and the improvement in immunotherapies have led to new therapeutic pathways to target and exploit. Here, we review the more promising pathways that are able to be targeted and other therapeutic possibilities for T-ALL.

Recent Findings

Preclinical models and early-phase clinical trials have shown promising results in some case in the treatment of T-ALL. Targeting many different pathways could lead to the next advancement in the treatment of relapsed and/or refractory disease. Recent advances in cellular therapies have also shown promise in this space.

Summary

When reviewing the literature as a whole, targeting important pathways and antigens likely will lead to the next advancement in T-ALL survival since intensifying chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stock W, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood. 2019;133(14):1548–59. Practice changing publication on AYA ALL from an adult cooperative group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schrappe M, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118(8):2077–84.

    Article  CAS  PubMed  Google Scholar 

  3. Dunsmore KP, et al. Children's Oncology Group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T-cell acute lymphoblastic leukemia. J Clin Oncol. 2020;38(28):3282–93. Practice changing trial for young people with T ALL from the pediatric collaborative group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jing D, et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood. 2015;125(2):273–83.

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, et al. IL-7 receptor mutations and steroid resistance in pediatric T cell acute lymphoblastic leukemia: a genome sequencing study. PLOS Med. 2016;13(12):e1002200.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barata JT, et al. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med. 2004;200(5):659–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Zwet JCG, et al. MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance. Leukemia. 2021;35(12):3394–405.

    Article  PubMed  Google Scholar 

  8. Dillon M, et al. Progress on Ras/MAPK signaling research and targeting in blood and solid cancers. Cancers (Basel). 2021;13(20).

  9. Ribeiro D, et al. STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv. 2018;2(17):2199–213.

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Bock CE, et al. HOXA9 cooperates with activated JAK/STAT signaling to drive leukemia development. Cancer Discov. 2018;8(5):616–31.

    Article  PubMed  Google Scholar 

  11. Blanco-Aparicio C, Carnero A. Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol. 2013;85(5):629–43.

    Article  CAS  PubMed  Google Scholar 

  12. Bachmann M, et al. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol. 2006;38(3):430–43.

    Article  CAS  PubMed  Google Scholar 

  13. Silva A, et al. Overexpression of wild-type IL-7Rα promotes T-cell acute lymphoblastic leukemia/lymphoma. Blood. 2021;138(12):1040–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Smedt R, et al. Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma. Blood. 2020;135(19):1685–95.

    Article  PubMed  Google Scholar 

  15. Luszczak S, et al. PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer. Signal Transduct Targeted Ther. 2020;5(1):7.

    Article  CAS  Google Scholar 

  16. Mansour MR, et al. High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia. 2006;20(3):537–9.

    Article  CAS  PubMed  Google Scholar 

  17. Weng AP, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20(15):2096–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moellering RE, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462(7270):182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Real PJ, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng H, et al. KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2009;296(3):G490–8.

    Article  CAS  PubMed  Google Scholar 

  21. Zweidler-McKay PA, et al. The safety and activity of BMS-906024, a gamma secretase inhibitor (GSI) with anti-Notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia (T-ALL): initial results of a phase 1 trial. Blood. 2014;124(21):968–8.

    Article  Google Scholar 

  22. Knoechel B, et al. Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case. Cold Spring Harb Mol Case Stud. 2015;1(1):a000539.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Borthakur G, et al. Phase 1 study to evaluate Crenigacestat (LY3039478) in combination with dexamethasone in patients with T-cell acute lymphoblastic leukemia and lymphoma. Cancer. 2021;127(3):372–80.

    Article  CAS  PubMed  Google Scholar 

  24. O'Neil J, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204(8):1813–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knoechel B, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46(4):364–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211–8. Article that includes a detailed description of genetic changes seen in T ALL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sicinska E, et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell. 2003;4(6):451–61.

    Article  CAS  PubMed  Google Scholar 

  28. Choi YJ, et al. The requirement for cyclin D function in tumor maintenance. Cancer Cell. 2012;22(4):438–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pikman Y, et al. Synergistic drug combinations with a CDK4/6 inhibitor in T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2017;23(4):1012–24.

    Article  CAS  PubMed  Google Scholar 

  30. Kwiatkowski N, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature. 2014;511(7511):616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mansour MR, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346(6215):1373–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cidado J, et al. AZD4573 is a highly selective CDK9 inhibitor that suppresses MCL-1 and induces apoptosis in hematologic cancer cells. Clin Cancer Res. 2020;26(4):922–34.

    Article  CAS  PubMed  Google Scholar 

  33. Olson CM, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol. 2018;14(2):163–70.

    Article  CAS  PubMed  Google Scholar 

  34. Chen L, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell. 2005;17(3):393–403.

    Article  CAS  PubMed  Google Scholar 

  35. Chonghaile TN, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 2014;4(9):1074–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Richard-Carpentier G, et al. Clinical experience with venetoclax combined with chemotherapy for relapsed or refractory T-cell acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2020;20(4):212–8.

    Article  PubMed  Google Scholar 

  37. Jain N, et al. A multicenter phase I study combining venetoclax with mini-hyper-CVD in older adults with untreated and relapsed/refractory acute lymphoblastic leukemia. Blood. 2019;134(Supplement_1):3867–7. An excellent preliminary study in older adults with combination chemotherapy that will likely drive future randomized trials.

    Article  Google Scholar 

  38. Pullarkat VA, et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 2021;11(6):1440–1453. Early phase study demonstrating effectiveness of BCL-2/BCL-XL combination in relapsed ALL.

  39. Vilas-Zornoza A, et al. Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia. 2012;26(7):1517–26.

    Article  CAS  PubMed  Google Scholar 

  40. Carraway HE, et al. Phase 1 study of the histone deacetylase inhibitor entinostat plus clofarabine for poor-risk Philadelphia chromosome-negative (newly diagnosed older adults or adults with relapsed refractory disease) acute lymphoblastic leukemia or biphenotypic leukemia. Leuk Res. 2021;110:106707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Touzart A, et al. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci Transl Med. 2021;13(595).

  42. Baig MU, et al. Venetoclax and decitabine in pediatric refractory T-cell lymphoblastic lymphoma. J Pediatr Hematol Oncol. 2021;43(7):e991–6.

    Article  CAS  PubMed  Google Scholar 

  43. Farhadfar N, et al. Venetoclax and decitabine for treatment of relapsed T-cell acute lymphoblastic leukemia: a case report and review of literature. Hematol Oncol Stem Cell Ther. 2021;14(3):246–51.

    Article  PubMed  Google Scholar 

  44. Rahmat LT, et al. Venetoclax in combination with decitabine for relapsed T-cell acute lymphoblastic leukemia after allogeneic hematopoietic cell transplant. Case Rep Hematol. 2018;2018:6092646.

    PubMed  PubMed Central  Google Scholar 

  45. Ito S. Proteasome inhibitors for the treatment of multiple myeloma. Cancers (Basel). 2020;12(2).

  46. Lato MW, et al. The new therapeutic strategies in pediatric T-cell acute lymphoblastic leukemia. Int J Mol Sci. 2021;22(9).

  47. Horton TM, et al. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: a report from the Children's Oncology Group. Br J Haematol. 2019;186(2):274–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Teachey DT, et al. Children's Oncology Group Trial AALL1231: a phase III clinical trial testing bortezomib in newly diagnosed T-cell acute lymphoblastic leukemia and lymphoma. J Clin Oncol. 2022:Jco2102678. Initial evidence of potential utility of proteasome inhibition in T ALL.

  49. August KJ, et al. Treatment of children with relapsed and refractory acute lymphoblastic leukemia with mitoxantrone, vincristine, pegaspargase, dexamethasone, and bortezomib. Pediatr Blood Cancer. 2020;67(3):e28062.

    Article  PubMed  Google Scholar 

  50. Amrein P, et al. Ixazomib in addition to chemotherapy for the treatment of acute lymphoblastic leukemia in older adults. Leuk Lymphoma. 2022;63:1–8.

    Article  Google Scholar 

  51. Vicente C, et al. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia. Haematologica. 2015;100(10):1301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Girardi T, et al. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113–23.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang J, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maude SL, et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood. 2015;125(11):1759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Delgado-Martin C, et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia. 2017;31(12):2568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barber KE, et al. Amplification of the ABL gene in T-cell acute lymphoblastic leukemia. Leukemia. 2004;18(6):1153–6.

    Article  CAS  PubMed  Google Scholar 

  57. Graux C, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36(10):1084–9.

    Article  CAS  PubMed  Google Scholar 

  58. Quintás-Cardama A, et al. Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia. 2008;22(6):1117–24.

    Article  PubMed  Google Scholar 

  59. Vanden Bempt M, et al. Cooperative enhancer activation by TLX1 and STAT5 drives development of NUP214-ABL1/TLX1-positive T cell acute lymphoblastic leukemia. Cancer Cell. 2018;34(2):271–285.e7.

    Article  Google Scholar 

  60. Laukkanen S, et al. In silico and preclinical drug screening identifies dasatinib as a targeted therapy for T-ALL. Blood Cancer J. 2017;7(9):e604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frismantas V, et al. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood. 2017;129(11):e26–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Deenik W, et al. Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia. 2009;23(3):627–9.

    Article  CAS  PubMed  Google Scholar 

  63. Cordo’ V, et al. Phosphoproteomic profiling of T cell acute lymphoblastic leukemia reveals targetable kinases and combination treatment strategies. Nat Comm. 2022;13(1):1048.

    Article  Google Scholar 

  64. Pocock R, et al. Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia. Br J Haematol. 2021;194(1):28–43.

    Article  PubMed  Google Scholar 

  65. Palamarchuk A, et al. Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity. Cancer Res. 2005;65(11):4515–9.

    Article  CAS  PubMed  Google Scholar 

  66. Gutierrez A, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 2009;114(3):647–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Piovan E, et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell. 2013;24(6):766–76.

    Article  CAS  PubMed  Google Scholar 

  68. Kong D, et al. Growth inhibition and suppression of the mTOR and Wnt/β-catenin pathways in T-acute lymphoblastic leukemia by rapamycin and MYCN depletion. Hematol Oncol. 2021;39(2):222–30.

    Article  CAS  PubMed  Google Scholar 

  69. Daver N, et al. A phase I/II study of the mTOR inhibitor everolimus in combination with HyperCVAD chemotherapy in patients with relapsed/refractory acute lymphoblastic leukemia. Clin Cancer Res. 2015;21(12):2704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bride KL, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood. 2018;131(9):995–9. Potential preclinical evidence to incorporate daratumumab in future T ALL clinical trials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Naik J, et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica. 2019;104(3):e100–3.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Boissel N, et al. Isatuximab monotherapy in patients with refractory T-acute lymphoblastic leukemia or T-lymphoblastic lymphoma: phase 2 study. Cancer Med. 2022;11(5):1292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zuch de Zafra CL, et al. Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell-recruiting antibody optimized for cytotoxicity and cytokine release. Clin Cancer Res. 2019;25(13):3921–33.

    Article  CAS  PubMed  Google Scholar 

  74. Teachey DT, Hunger SP. Anti-CD7 CAR T cells for T-ALL: impressive early-stage efficacy. Nat Rev Clin Oncol. 2021;18(11):677–8.

    Article  CAS  PubMed  Google Scholar 

  75. Pan J, et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J Clin Oncol. 2021;39(30):3340–51.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang C, et al. Engineering CAR-T cells. Biomark Res. 2017;5(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Maude SL, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR-T cell therapy in T-cell malignancies: is success a low-hanging fruit? Stem Cell Res Ther. 2021;12(1):527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sánchez-Martínez D, et al. Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood. 2019;133(21):2291–304.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam S. DuVall.

Ethics declarations

Conflict of Interest

DuVall: speaker for CE Concepts; Wesevich: no conflicts of interests or competing interests; Larson: consultant or advisor to AbbVie, Amgen, Ariad/Takeda, Astellas, Celgene/BMS, Curis, CVS/Caremark, Epizyme, Immunogen, Jazz Pharmaceuticals, Kling Biotherapeutics, MedPace, MorphoSys, Novartis, and Servier and has received clinical research support to his institution from Astellas, Celgene, Cellectis, Daiichi Sankyo, Forty Seven/Gilead, Novartis, and Rafael Pharmaceuticals and royalties from UpToDate.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DuVall, A.S., Wesevich, A. & Larson, R.A. Developing Targeted Therapies for T Cell Acute Lymphoblastic Leukemia/Lymphoma. Curr Hematol Malig Rep 18, 217–225 (2023). https://doi.org/10.1007/s11899-023-00706-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-023-00706-7

Keywords

Navigation