Skip to main content
Log in

β-hydroxybutyrate impairs nasopharyngeal carcinoma cell aggressiveness via histone deacetylase 4 inhibition

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Cancer stem cell phenotype confers tumor aggressiveness in multiple malignancies, including nasopharyngeal carcinoma (NPC). Many studies supported that β-hydroxybutyrate (BHB), a ketone body, acts as an epigenetic factor with an anticancer effect. Nevertheless, the effects of BHB on NPC remain elusive.

Objective

This study explored whether BHB suppressed the aggressive phenotype of NPC cells by suppressing their stemness-like characteristics and exerting an anti-NPC effect.

Results

The proliferation, migration, and invasion abilities of NPC cells after BHB intervention were attenuated, the protein levels of E-cadherin were downregulated, that of N-cadherin and vimentin were upregulated, the volume and number of cell spheres were reduced, and the number of CD44 + cells (cell surface stem cell marker) was reduced. Knockdown of HDAC4 abrogated the effects of BHB on cell proliferation, invasive phenotype, and stemness. The molecular docking map of BHB-HDAC4 displayed that BHB binds the catalytic domain in HDAC4, speculating that BHB functions as an HDAC4-specific inhibitor, preventing the catalytic function of HDAC4 protein rather than inhibiting the translational synthesis of HDAC4 protein.

Conclusions

BHB inhibited NPC cells’ proliferation, stemness characteristics, and invasive phenotypes by specifically restraining HDAC4 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Allen BG et al (2013) Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res 19:3905–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baloche V et al (2020) Emerging therapeutic targets for nasopharyngeal carcinoma: opportunities and challenges. Expert Opin Ther Targets 24:545–558

    Article  CAS  PubMed  Google Scholar 

  • Barry D et al (2018) The ketogenic diet in disease and development. Int J Dev Neurosci 68:53–58

    Article  PubMed  Google Scholar 

  • Bonuccelli G et al (2010) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brabletz T et al (2005) Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749

    Article  CAS  PubMed  Google Scholar 

  • Chae YC, Kim JH (2018) Cancer stem cell metabolism: target for cancer therapy. BMB Rep 51:319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YC et al (2016) High-throughput single-cell derived sphere formation for cancer stem-like cell identification and analysis. Sci Rep 6:27301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YP et al (2019) Nasopharyngeal carcinoma. Lancet 394:64–80

    Article  PubMed  Google Scholar 

  • Cheng C et al (2021) HDAC4 promotes nasopharyngeal carcinoma progression and serves as a therapeutic target. Cell Death Dis 12:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17:313–319

    Article  CAS  PubMed  Google Scholar 

  • Dmitrieva-Posocco O et al (2022) β-Hydroxybutyrate suppresses colorectal cancer. Nature 605:160–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evangeliou AE et al (2022) Restricted ketogenic diet therapy for primary lung cancer with metastasis to the brain: a case report. Cureus 14:e27603

    PubMed  PubMed Central  Google Scholar 

  • Guan S, Wei J, Huang L, Wu L (2020) Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur J Med Chem 207:112758

  • Hao D et al (2014) Evaluation of E-cadherin, β-catenin and vimentin protein expression using quantitative immunohistochemistry in nasopharyngeal carcinoma patients. Clin Invest Med 37:E320-330

    Article  PubMed  Google Scholar 

  • Huang T et al (2020) Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics 10:8721–8743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janisiewicz AM et al (2012) CD44(+) cells have cancer stem cell-like properties in nasopharyngeal carcinoma. Int Forum Allergy Rhinol 2:465–470

    Article  PubMed  Google Scholar 

  • Jemal M, Molla TS, Asmamaw DT (2021) Ketogenic diets and their therapeutic potential on breast cancer: a systemic review. Cancer Manag Res 13:9147–9155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji CC et al (2020) A ketogenic diet attenuates proliferation and stemness of glioma stem-like cells by altering metabolism resulting in increased ROS production. Int J Oncol 56:606–617

    CAS  PubMed  Google Scholar 

  • Khoziainova S, Rozenberg G, Levy M (2022) Ketogenic diet and beta-hydroxybutyrate in colorectal cancer. DNA Cell Biol 41:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • King J, Patel M, Chandrasekaran S (2021) Metabolism, HDACs, and HDAC inhibitors: a systems biology perspective. Metabolites 11(11):792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam WKJ, Chan JYK (2018) Recent advances in the management of nasopharyngeal carcinoma. F1000Res 7:1829

    Article  Google Scholar 

  • Lan Y et al (2022) Ketogenic diets and hepatocellular carcinoma. Front Oncol 12:879205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopaschuk GD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  • Lu Y et al (2021) Epigenetic inactivation of Acetyl-CoA acetyltransferase 1 promotes the proliferation and metastasis in nasopharyngeal carcinoma by blocking ketogenesis. Front Oncol 11:667673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig DS (2020) The ketogenic diet: evidence for optimism but high-quality research needed. J Nutr 150:1354–1359

    Article  PubMed  Google Scholar 

  • Luo W et al (2017) Inactivation of HMGCL promotes proliferation and metastasis of nasopharyngeal carcinoma by suppressing oxidative stress. Sci Rep 7:11954

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Outschoorn UE et al (2012) Ketone body utilization drives tumor growth and metastasis. Cell Cycle 11:3964–3971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami D et al (2019) β-Hydroxybutyrate, a ketone body, reduces the cytotoxic effect of cisplatin via activation of HDAC5 in human renal cortical epithelial cells. Life Sci 222:125–132

    Article  CAS  PubMed  Google Scholar 

  • Mittal V (2018) Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol 13:395–412

    Article  CAS  PubMed  Google Scholar 

  • Najafi M, Mortezaee K, Majidpoor J (2019) Cancer stem cell (CSC) resistance drivers. Life Sci 234:116781

    Article  CAS  PubMed  Google Scholar 

  • Okechukwu CE (2022) Cross talk between the ketogenic diet and metastatic prostate cancer cells. World J Mens Health 40:162–163

    Article  PubMed  Google Scholar 

  • Peng S et al (2018) Snail-mediated cancer stem cell-like phenotype in human CNE2 nasopharyngeal carcinoma cell. Head Neck 40:485–497

    Article  PubMed  Google Scholar 

  • Plotti F et al (2020) Diet and chemotherapy: the effects of fasting and ketogenic diet on cancer treatment. Chemotherapy 65:77–84

    Article  CAS  PubMed  Google Scholar 

  • Poff A et al (2019) Targeting the Warburg effect for cancer treatment: ketogenic diets for management of glioma. Semin Cancer Biol 56:135–148

    Article  CAS  PubMed  Google Scholar 

  • Sampaio LP (2016) Ketogenic diet for epilepsy treatment. Arq Neuropsiquiatr 74:842–848

    Article  PubMed  Google Scholar 

  • Shakery A et al (2018) Beta-hydroxybutyrate promotes proliferation, migration and stemness in a subpopulation of 5FU treated SW480 cells: evidence for metabolic plasticity in colon cancer. Asian Pac J Cancer Prev 19:3287–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazu T et al (2013) Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214

    Article  CAS  PubMed  Google Scholar 

  • Singh T et al (2022) Differential molecular mechanistic behavior of HDACs in cancer progression. Med Oncol 39:171

    Article  CAS  PubMed  Google Scholar 

  • Skandalis SS, Karalis TT, Chatzopoulos A, Karamanos NK (2019) Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell Signal 63:109377

    Article  CAS  PubMed  Google Scholar 

  • Stronach EA et al (2011) HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer. Cancer Res 71:4412–4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J et al (2011) Identification of cancer stem-like CD44+ cells in human nasopharyngeal carcinoma cell line. Arch Med Res 42:15–21

    Article  CAS  PubMed  Google Scholar 

  • Telang N. (2022) Stem Cell Models for Cancer Therapy. Int J Mol Sci 23.

  • Thomas JG, Veznedaroglu E (2020) Ketogenic diet for malignant gliomas: a review. Curr Nutr Rep 9:258–263

    Article  PubMed  Google Scholar 

  • Wang Z, Qin G, Zhao TC (2014) HDAC4: mechanism of regulation and biological functions. Epigenomics 6:139–150

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang GH, Li SL (2015) Isolation and phenotypic characterization of cancer stem like cells from nasopharyngeal carcinoma. Drug Res (stuttg) 65:323–326

    CAS  PubMed  Google Scholar 

  • Weber DD et al (2020) Ketogenic diet in the treatment of cancer - where do we stand? Mol Metab 33:102–121

    Article  CAS  PubMed  Google Scholar 

  • Wei R et al (2022) Ketogenesis attenuates KLF5-dependent production of CXCL12 to overcome the immunosuppressive tumor microenvironment in colorectal cancer. Cancer Res 82:1575–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Wang M, Miao H (2022) Ketogenic diet: new avenues to overcome colorectal cancer. Signal Transduct Target Ther 7:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Q et al (2022) The ketogenic diet could improve the efficacy of curcumin and Oldenlandia diffusa extract in the treatment of gastric cancer by increasing miR340 expression and apoptosis mediated by autophagy, oxidative stress, and angiogenesis. J Food Biochem 46:e14407

    Article  CAS  PubMed  Google Scholar 

  • Xie J et al (2021) Targeting cancer cell plasticity by HDAC inhibition to reverse EBV-induced dedifferentiation in nasopharyngeal carcinoma. Signal Transduct Target Ther 6:333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2022a) HDAC4 mediates smoking-induced pancreatic cancer metastasis. Pancreas 51:190–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L et al (2022b) Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med (n Y) 3:119–136

    CAS  Google Scholar 

  • Ye L et al (2021) Dihydromyricetin exhibits antitumor activity in nasopharyngeal cancer cell through antagonizing Wnt/β-catenin signaling. Integr Cancer Ther 20:1534735421991217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang WJ et al (2022) HDAC4 promotes the growth and metastasis of gastric cancer via autophagic degradation of MEKK3. Br J Cancer 127:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Weinberg RA (2018) Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med 12:361–373

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors have no acknowledgments.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

JH designed the research plan. JH, XC, HL, and XC performed the experiments and analyzed the data. JH and XC wrote the manuscript.

Corresponding author

Correspondence to Jinqiao Huang.

Ethics declarations

Conflict of interest

JH, XC, HL and XC have no conflict of interest to declare.

Ethical approval

This article contains no studies with human participants or animals performed by authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Chen, X., Lin, H. et al. β-hydroxybutyrate impairs nasopharyngeal carcinoma cell aggressiveness via histone deacetylase 4 inhibition. Mol. Cell. Toxicol. (2023). https://doi.org/10.1007/s13273-023-00378-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-023-00378-7

Keywords

Navigation