Skip to main content

Advertisement

Log in

Enhancement by pyrazolones of colistin efficacy against mcr-1-expressing E. coli: an in silico and in vitro investigation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Owing to the emergence of antibiotic resistance, the polymyxin colistin has been recently revived to treat acute, multidrug-resistant Gram-negative bacterial infections. Positively charged colistin binds to negatively charged lipids and damages the outer membrane of Gram-negative bacteria. However, the MCR-1 protein, encoded by the mobile colistin resistance (mcr) gene, is involved in bacterial colistin resistance by catalysing phosphoethanolamine (PEA) transfer onto lipid A, neutralising its negative charge, and thereby reducing its interaction with colistin. Our preliminary results showed that treatment with a reference pyrazolone compound significantly reduced colistin minimal inhibitory concentrations in Escherichia coli expressing mcr-1 mediated colistin resistance (Hanpaibool et al. in ACS Omega, 2023). A docking-MD combination was used in an ensemble-based docking approach to identify further pyrazolone compounds as candidate MCR-1 inhibitors. Docking simulations revealed that 13/28 of the pyrazolone compounds tested are predicted to have lower binding free energies than the reference compound. Four of these were chosen for in vitro testing, with the results demonstrating that all the compounds tested could lower colistin MICs in an E. coli strain carrying the mcr-1 gene. Docking of pyrazolones into the MCR-1 active site reveals residues that are implicated in ligand–protein interactions, particularly E246, T285, H395, H466, and H478, which are located in the MCR-1 active site and which participate in interactions with MCR-1 in ≥ 8/10 of the lowest energy complexes. This study establishes pyrazolone-induced colistin susceptibility in E. coli carrying the mcr-1 gene, providing a method for the development of novel treatments against colistin-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated and/or analysed during this study are included in this published article and its supplementary information files.

References

  1. Hanpaibool C, Ngamwongsatit N, Ounjai P et al (2023) Pyrazolones potentiate colistin activity against MCR-1-producing resistant bacteria: computational and microbiological study. ACS Omega. https://doi.org/10.1021/acsomega.2c07165

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109(7):309. https://doi.org/10.1179/2047773215Y.0000000030

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sharma C, Rokana N, Chandra M et al (2018) Antimicrobial Resistance: its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci. https://doi.org/10.3389/fvets.2017.00237

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dutescu IA, Hillier SA (2021) Encouraging the development of new antibiotics: are financial incentives the right way forward? a systematic review and case study. Infect Drug Resist 14:415. https://doi.org/10.2147/IDR.S287792

    Article  PubMed  PubMed Central  Google Scholar 

  5. El-Sayed Ahmed MAE-G, Zhong L-L, Shen C et al (2020) Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect 9(1):868. https://doi.org/10.1080/22221751.2020.1754133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Falagas ME, Kasiakou SK, Saravolatz LD (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40(9):1333. https://doi.org/10.1086/429323

    Article  CAS  PubMed  Google Scholar 

  7. Ayoub Moubareck C (2020) Polymyxins and bacterial membranes: a review of antibacterial activity and mechanisms of resistance. Membranes (Basel) 10(8):181. https://doi.org/10.3390/membranes10080181

    Article  CAS  PubMed  Google Scholar 

  8. Yang Q, Li M, Spiller OB et al (2017) Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat Commun 8(1):2054. https://doi.org/10.1038/s41467-017-02149-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sabnis A, Hagart KL, Klöckner A et al (2021) Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. Elife 10:e65836. https://doi.org/10.7554/eLife.65836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gurjar M (2015) Colistin for lung infection: an update. J Intensive Care 3(1):3. https://doi.org/10.1186/s40560-015-0072-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hamel M, Rolain J-M, Baron SA (2021) The history of colistin resistance mechanisms in bacteria: progress and challenges. Microorganisms. https://doi.org/10.3390/microorganisms9020442

    Article  PubMed  PubMed Central  Google Scholar 

  12. Terveer EM, Nijhuis RHT, Crobach MJT et al (2017) Prevalence of colistin resistance gene (mcr-1) containing Enterobacteriaceae in feces of patients attending a tertiary care hospital and detection of a mcr-1 containing, colistin susceptible E. coli. PLoS One 12(6):e0178598. https://doi.org/10.1371/journal.pone.0178598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li B, Yin F, Zhao X et al (2020) Colistin resistance gene mcr-1 mediates cell permeability and resistance to hydrophobic antibiotics. Front Microbiol. https://doi.org/10.3389/fmicb.2019.03015

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kai J, Wang S (2020) Recent progress on elucidating the molecular mechanism of plasmid-mediated colistin resistance and drug design. Int Microbiol 23(3):355. https://doi.org/10.1007/s10123-019-00112-1

    Article  PubMed  Google Scholar 

  15. Sun Z, Palzkill T (2021) Deep mutational scanning reveals the active-site sequence requirements for the colistin antibiotic resistance enzyme MCR-1. mBio 12(6):e0277621. https://doi.org/10.1128/mBio.02776-21

    Article  PubMed  Google Scholar 

  16. Ma W, Jiang X, Dou Y et al (2021) Biophysical impact of lipid a modification caused by mobile colistin resistance gene on bacterial outer membranes. J Phys Chem Lett 12(48):11629. https://doi.org/10.1021/acs.jpclett.1c03295

    Article  CAS  PubMed  Google Scholar 

  17. Li H, Wang Y, Chen Q et al (2021) Identification of Functional interactome of colistin resistance protein MCR-1 in Escherichia coli. Front Microbiol. https://doi.org/10.3389/fmicb.2020.583185

    Article  PubMed  PubMed Central  Google Scholar 

  18. Javed H, Saleem S, Zafar A et al (2020) Emergence of plasmid-mediated mcr genes from Gram-negative bacteria at the human-animal interface. Gut Pathog 12(1):54. https://doi.org/10.1186/s13099-020-00392-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao R, Hu Y, Li Z et al (2016) Dissemination and Mechanism for the MCR-1 Colistin Resistance. PLoS Pathog 12(11):e1005957. https://doi.org/10.1371/journal.ppat.1005957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varela-Rial A, Majewski M, De Fabritiis G (2022) Structure based virtual screening: Fast and slow. WIREs Comput Mol Sci 12(2):e1544. https://doi.org/10.1002/wcms.1544

    Article  CAS  Google Scholar 

  21. Santos LHS, Ferreira RS, Caffarena ER (2019) Integrating molecular docking and molecular dynamics simulations. Methods Mol Biol 2053:13. https://doi.org/10.1007/978-1-4939-9752-7_2

    Article  CAS  PubMed  Google Scholar 

  22. Xie B, Clark J, Minh D (2018) Efficiency of stratification for ensemble docking using reduced ensembles. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.8b00314

    Article  PubMed  PubMed Central  Google Scholar 

  23. Evangelista Falcon W, Ellingson SR, Smith JC et al (2019) Ensemble docking in drug discovery: how many protein configurations from molecular dynamics simulations are needed to reproduce known ligand binding? J Phys Chem B 123(25):5189. https://doi.org/10.1021/acs.jpcb.8b11491

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Z, Dai X, Li C et al (2020) Pyrazolone structural motif in medicinal chemistry: retrospect and prospect. Eur J Med Chem 186:111893. https://doi.org/10.1016/j.ejmech.2019.111893

    Article  CAS  PubMed  Google Scholar 

  25. Santos NE, Carreira ARF, Silva VLM et al (2020) Natural and biomimetic antitumor pyrazoles. Perspect Mol 25(6):1364. https://doi.org/10.3390/molecules25061364

    Article  CAS  Google Scholar 

  26. Allison D, Delancey E, Ramey H et al (2017) Synthesis and antimicrobial studies of novel derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-Acinetobacter baumannii agents. Bioorg Med Chem Lett 27(3):387. https://doi.org/10.1016/j.bmcl.2016.12.068

    Article  CAS  PubMed  Google Scholar 

  27. Aa M (2022) Antibacterial pyrazoles: tackling resistant bacteria. Future Med Chem 14(5):343. https://doi.org/10.4155/fmc-2021-0275

    Article  CAS  Google Scholar 

  28. Alfei S, Caviglia D, Zorzoli A et al (2022) Potent and broad-spectrum bactericidal activity of a nanotechnologically manipulated novel pyrazole. Biomedicines 10(4):907. https://doi.org/10.3390/biomedicines10040907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lythell E, Suardíaz R, Hinchliffe P et al (2020) Resistance to the “last resort” antibiotic colistin: a single-zinc mechanism for phosphointermediate formation in MCR enzymes. Chem Commun 56(50):6874. https://doi.org/10.1039/D0CC02520H

    Article  CAS  Google Scholar 

  30. Kittikool T, Thupyai A, Phomphrai K et al (2018) Copper/persulfate-promoted oxidative decarboxylative C−H acylation of pyrazolones with α-oxocarboxylic acids: direct access to 4-acylpyrazolones under mild conditions. Adv Synth Catal 360(17):3345. https://doi.org/10.1002/adsc.201800464

    Article  CAS  Google Scholar 

  31. Elshikh M, Ahmed S, Funston S et al (2016) Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett 38(6):1015. https://doi.org/10.1007/s10529-016-2079-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337. https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  34. Daina A, Zoete V (2016) A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11(11):1117. https://doi.org/10.1002/cmdc.201600182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hinchliffe P, Yang QE, Portal E et al (2017) Insights into the mechanistic basis of plasmid-mediated colistin resistance from crystal structures of the catalytic domain of MCR-1. Sci Rep 7(1):39392. https://doi.org/10.1038/srep39392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li P, Merz KM Jr (2014) Taking into account the ion-induced dipole interaction in the nonbonded model of ions. J Chem Theory Comput 10(1):289. https://doi.org/10.1021/ct400751u

    Article  CAS  PubMed  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16 Rev. C.01. Wallingford, CT. https://gaussian.com/

  38. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09 Wallingford, CT. https://gaussian.com/

  39. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Santos-Martins D, Forli S, Ramos M et al (2014) AutoDock4(Zn): an improved auto dock force field for small-molecule docking to zinc metalloproteins. J Chem Inf Model. https://doi.org/10.1021/ci500209e

    Article  PubMed  PubMed Central  Google Scholar 

  41. Testing ECoAS (2009) The European Committee on Antimicrobial Susceptibility Testing.

  42. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang Z, Twidale RM, Gervasoni S et al (2021) Multiscale workflow for modeling ligand complexes of zinc metalloproteins. J Chem Inf Model 61(11):5658. https://doi.org/10.1021/acs.jcim.1c01109

    Article  CAS  PubMed  Google Scholar 

  44. Wei P, Song G, Shi M et al (2018) Substrate analog interaction with MCR-1 offers insight into the rising threat of the plasmid-mediated transferable colistin resistance. Faseb j 32(2):1085. https://doi.org/10.1096/fj.201700705R

    Article  CAS  PubMed  Google Scholar 

  45. Hanpaibool C, Maitarad P, Rungrotmongkol T (2022) Prediction of substrate binding on mobile colistin resistance using in silico approach. ScienceAsia. https://doi.org/10.2306/scienceasia1513-1874.2022.152

    Article  Google Scholar 

  46. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778. https://doi.org/10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  47. Cižman M, Plankar Srovin T (2018) Antibiotic consumption and resistance of gram-negative pathogens (collateral damage). GMS Infect Dis 6:05. https://doi.org/10.3205/id000040

    Article  Google Scholar 

  48. Zhou Y, Wang J, Guo Y et al (2019) Discovery of a potential MCR-1 inhibitor that reverses polymyxin activity against clinical mcr-1-positive Enterobacteriaceae. J Infect 78(5):364. https://doi.org/10.1016/j.jinf.2019.03.004

    Article  PubMed  Google Scholar 

  49. Lan XJ, Yan HT, Lin F et al (2019) Design, synthesis and biological evaluation of 1-phenyl-2-(phenylamino) ethanone derivatives as Novel MCR-1 inhibitors. Molecules. https://doi.org/10.3390/molecules24152719

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang X, Hu L, Wang X et al (2023) Cu(II) and Zn(II) crystal complexes based on pyrazolone: synthesis and application as antibacterial agents. Inorg Chimica Acta 556:121618. https://doi.org/10.1016/j.ica.2023.121618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.H. thanks the Science Achievement Scholarship of Thailand for the Ph.D. scholarship, the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund, GCUGR1125623025D), and Ponlawoot Raksat for designing primer knowledge; Nguyet Luong, Zongfan Yang, and Kittika Kiratikunakorn for kindly supporting us. J.S. and A.J.M. thank the U.K. Engineering and Physical Sciences (EPSRC EP/M027546/1 (BristolBridge) and EP/M022609/1) and Medical (MRC MR/P007295/1) Research Councils. This work was in part carried out using the computational facilities of the Advanced Computing Research Centre, University of Bristol—http://www.bris.ac.uk/acrc/.

Funding

This study was funded by the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund, GCUGR1125623025D). Additional support from the U.K. Engineering and Physical Sciences (EPSRC EP/M027546/1 (BristolBridge) and EP/M022609/1) and Medical (MRC MR/P007295/1) Research Councils is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The authors responsible for the conceptualization of the research study are PO, NN, and TR; SY synthesized the compounds; CH wrote the manuscript, carried out experiments and simulations and performed formal analysis, prepared data curation and visualization; AJM provided computational discussion; JS, NN, and TR wrote the revision and editing manuscript; JS and NN were both involved in the microbiology technique; NN and TR provided resources and supervision.

Corresponding authors

Correspondence to Natharin Ngamwongsatit or Thanyada Rungrotmongkol.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3318 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanpaibool, C., Ounjai, P., Yotphan, S. et al. Enhancement by pyrazolones of colistin efficacy against mcr-1-expressing E. coli: an in silico and in vitro investigation. J Comput Aided Mol Des 37, 479–489 (2023). https://doi.org/10.1007/s10822-023-00519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00519-z

Keywords

Navigation