Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 25, 2023

Colloidal nanocrystal synthesis of alkaline earth metal sulfides for solution-processed solar cell contact layers

  • Vincent Mauritz , Katharina E. Dehm , Simon P. Hager and Ryan W. Crisp EMAIL logo

Abstract

To gain insight into the applicability as building blocks for optoelectronic device development, alkaline earth metal sulfides are investigated. MgS, CaS, SrS, and BaS have been systematically synthesized as colloidal particles in olelyamine. The particle sizes range from around 819 nm for MgS to 12.8 nm for CaS, 25.0 nm for SrS, and 21.6 nm for BaS. The heat-up synthesis uses commerically available precursors without complicated procedures. The structural and optical properties are investigated with X-ray diffraction, spectroscopic ellipsometry, UV–vis spectrophotometry, scanning electron microscopy, and energy dispersive X-ray spectroscopy.


Corresponding author: Ryan W. Crisp, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: 465220299

Acknowledgements

The authors thank Julien Bachmann and Dirk M. Guldi for use of laboratories and instrumentation and Christian Knüpfer and Sjoerd Harder for providing metal salts at the initiation of the project. The authors thank Lara Kim Linke and Lisa Ngo for their support in laboratory work.

  1. Author contributions: All authors contributed to data collection, analysis, and writing of the article.

  2. Research funding: This work was supported by the “Engineering of Advanced Materials” (EAM) Cluster at FAU under a Starting Grant for RWC and by the Deutsche Forschungsgemeinschaft (DFG) – Project number 465220299.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Ganesan, A. A., Houtepen, A. J., Crisp, R. W. Quantum dot solar cells: small beginnings have large impacts. Appl. Sci. 2018, 8, 1867; https://doi.org/10.3390/app8101867.Search in Google Scholar

2. Kant, N., Singh, P. Review of next generation photovoltaic solar cell technology and comparative materialistic development. Mater. Today: Proc. 2022, 56, 3460–3470; https://doi.org/10.1016/j.matpr.2021.11.116.Search in Google Scholar

3. Saparov, B. Next generation thin-film solar absorbers based on chalcogenides. Chem. Rev. 2022, 122, 10575–10577; https://doi.org/10.1021/acs.chemrev.2c00346.Search in Google Scholar PubMed

4. Moon, D. G., Rehan, S., Yeon, D. H., Lee, S. M., Park, S. J., Ahn, S., Cho, Y. S. A review on binary metal sulfide heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2019, 200, 109963; https://doi.org/10.1016/j.solmat.2019.109963.Search in Google Scholar

5. Matthews, P. D., McNaughter, P. D., Lewis, D. J., O’Brien, P. Shining a light on transition metal chalcogenides for sustainable photovoltaics. Chem. Sci. 2017, 8, 4177–4187; https://doi.org/10.1039/c7sc00642j.Search in Google Scholar PubMed PubMed Central

6. Madarász, J., Leskelä, T., Rautanen, J., Niinistö, L. Oxidation of alkaline-earth-metal sulfide powders and thin films. J. Mater. Chem. 1996, 6, 781–787; https://doi.org/10.1039/jm9960600781.Search in Google Scholar

7. Egami, A., Onoye, T., Narita, K. Electrical conductivities of alkaline earth sulfides. Trans. Jpn. Inst. Met. 1981, 22, 399–409; https://doi.org/10.2320/matertrans1960.22.399.Search in Google Scholar

8. Lai, Y.-H., Cheung, W.-Y., Lok, S.-K., Wong, G. K. L., Ho, S.-K., Tam, K.-W., Sou, I.-K. Rocksalt MgS solar blind ultra-violet detectors. AIP Adv. 2012, 2, 012149; https://doi.org/10.1063/1.3690124.Search in Google Scholar

9. He, Q. L., Lai, Y. H., Liu, Y., Beltjens, E., Qi, J., Sou, I. K. High performance CaS solar-blind ultraviolet photodiodes fabricated by seed-layer-assisted growth. Appl. Phys. Lett. 2015, 107, 181903; https://doi.org/10.1063/1.4934944.Search in Google Scholar

10. Pervez, S., Iqbal, M. Z. Evaluation of battery-grade alkaline earth metal sulfide electrodes for energy storage applications. Int. J. Energy Res. 2022, 46, 8093–8101; https://doi.org/10.1002/er.7712.Search in Google Scholar

11. Sun, B., Yi, G., Chen, D., Zhou, Y., Cheng, J. Synthesis and characterization of strongly fluorescent europium-doped calcium sulfide nanoparticles. J. Mater. Chem. 2002, 12, 1194–1198; https://doi.org/10.1039/b109352e.Search in Google Scholar

12. Sun, Y.-Y., Agiorgousis, M. L., Zhang, P., Zhang, S. Chalcogenide perovskites for photovoltaics. Nano Lett. 2015, 15, 581–585; https://doi.org/10.1021/nl504046x.Search in Google Scholar PubMed

13. Sopiha, K. V., Comparotto, C., Márquez, J. A., Scragg, J. J. S. Chalcogenide perovskites: tantalizing prospects, challenging materials. Adv. Opt. Mater. 2021, 10, 2101704; https://doi.org/10.1002/adom.202101704.Search in Google Scholar

14. Jess, A., Yang, R., Hages, C. J. On the phase stability of chalcogenide perovskites. Chem. Mater. 2022, 34, 6894–6901; https://doi.org/10.1021/acs.chemmater.2c01289.Search in Google Scholar

15. Marino, E., Kodger, T. E., Crisp, R. W., Timmerman, D., MacArthur, K. E., Heggen, M., Schall, P. Repairing nanoparticle surface defects. Angew. Chem. 2017, 129, 13983–13987; https://doi.org/10.1002/ange.201705685.Search in Google Scholar

16. Roth, A. N., Chen, Y., Adamson, M. A. S., Gi, E., Wagner, M., Rossini, A. J., Vela, J. Alkaline-earth chalcogenide nanocrystals: solution-phase synthesis, surface Chemistry, and stability. ACS Nano 2022, 16, 12024–12035; https://doi.org/10.1021/acsnano.2c02116.Search in Google Scholar PubMed

17. Zhao, Y., Rabouw, F. T., Donegá, C. D. M., Meijerink, A., van Walree, C. A. Single-source precursor synthesis of colloidal CaS and SrS nanocrystals. Mater. Lett. 2012, 80, 75–77; https://doi.org/10.1016/j.matlet.2012.04.066.Search in Google Scholar

18. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K. A. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002; https://doi.org/10.1063/1.4812323.Search in Google Scholar

19. Güntert, O. J., Faessler, A. Präzisionsbestimmung der Gitterkonstanten der Erdalkalisulfide MgS, CaS, SrS und BaS. Z. Kristallogr. 1956, 107, 357–361; https://doi.org/10.1524/zkri.1956.107.5-6.357.Search in Google Scholar

20. Herzinger, C. M., Johs, B., McGahan, W. A., Woollam, J. A., Paulson, W. Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J. Appl. Phys. 1998, 83, 3323–3336; https://doi.org/10.1063/1.367101.Search in Google Scholar

21. Holzwarth, U., Gibson, N. The Scherrer equation versus the ’Debye-Scherrer equation. Nat. Nanotechnol. 2011, 6, 534; https://doi.org/10.1038/nnano.2011.145.Search in Google Scholar PubMed

22. Miranda, M. A. R., Sasaki, J. M. The limit of application of the Scherrer equation. Acta Crystallogr. Sect. A: Found. Crystallogr. 2018, 74, 54–65; https://doi.org/10.1107/s2053273317014929.Search in Google Scholar

23. Chase, M. W.Jr. NIST-JANAF Thermochemical Tables, Monograph 9, 4th ed.; American Chemical Society: Washington, DC, Vol. 9, 1998; pp. 1–1951.Search in Google Scholar

24. Zilevu, D., Creutz, S. E. Shape-controlled synthesis of colloidal nanorods and nanoparticles of barium titanium sulfide. Chem. Mater. 2021, 33, 5137–5146; https://doi.org/10.1021/acs.chemmater.1c01193.Search in Google Scholar

25. Zilevu, D., Parks, O. O., Creutz, S. E. Solution-phase synthesis of the chalcogenide perovskite barium zirconium sulfide as colloidal nanomaterials. Chem. Commun. 2022, 58, 10512–10515; https://doi.org/10.1039/d2cc03494h.Search in Google Scholar PubMed

26. Manteiga Vázquez, F., Yu, Q., Klepzig, L. F., Siebbeles, L. D. A., Crisp, R. W., Lauth, J. Probing excitons in ultrathin PbS nanoplatelets with enhanced near-infrared emission. J. Phys. Chem. Lett. 2021, 12, 680–685; https://doi.org/10.1021/acs.jpclett.0c03461.Search in Google Scholar PubMed

27. Crisp, R. W., Kroupa, D. M., Marshall, A. R., Miller, E. M., Zhang, J., Beard, M. C., Luther, J. M. Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells. Sci. Rep. 2015, 5, 9945; https://doi.org/10.1038/srep09945.Search in Google Scholar PubMed PubMed Central

28. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

29. Zhang, B., Xia, G., Chen, W., Gu, Q., Sun, D., Yu, X. Controlled-size hollow magnesium sulfide nanocrystals anchored on graphene for advanced lithium storage. ACS Nano 2018, 12, 12741–12750; https://doi.org/10.1021/acsnano.8b07770.Search in Google Scholar PubMed

30. Joo, J., Kim, T., Lee, J., Choi, S.-I., Lee, K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater. 2019, 31, 1806682; https://doi.org/10.1002/adma.201806682.Search in Google Scholar PubMed

31. Weigand, C., Crisp, R., Ladam, C., Furtak, T., Collins, R., Grepstad, J., Weman, H. Electrical, optical and structural properties of Al-doped ZnO thin films grown on GaAs(111)B substrates by pulsed laser deposition. Thin Solid Films 2013, 545, 124–129; https://doi.org/10.1016/j.tsf.2013.07.052.Search in Google Scholar

32. Crisp, R. W., Panthani, M. G., Rance, W. L., Duenow, J. N., Parilla, P. A., Callahan, R., Dabney, M. S., Berry, J. J., Talapin, D. V., Luther, J. M. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics. ACS Nano 2014, 8, 9063–9072; https://doi.org/10.1021/nn502442g.Search in Google Scholar PubMed

33. Crisp, R. W., Pach, G. F., Kurley, J. M., France, R. M., Reese, M. O., Nanayakkara, S. U., MacLeod, B. A., Talapin, D. V., Beard, M. C., Luther, J. M. Tandem solar cells from solution-processed CdTe and PbS quantum dots using a ZnTe–ZnO tunnel junction. Nano Lett. 2017, 17, 1020–1027; https://doi.org/10.1021/acs.nanolett.6b04423.Search in Google Scholar PubMed

34. Dobrozhan, O., Danylchenko, P., Novgorodtsev, A., Opanasyuk, A. Optical and recombination losses in Cu 2 ZnSn(S,Se) 4 -based thin-film solar cells with CdS, ZnSe, ZnS window and ITO, ZnO charge-collecting layers. J. Nanoelectron. Optoelectron. 2018, 13, 195–207; https://doi.org/10.1166/jno.2018.2192.Search in Google Scholar

35. Sreevidya, K. L., Abraham, N., Sajeev, C. Simulation studies of CZTS thin film solar cell using different buffer layers. Mater. Today: Proc. 2021, 43, 3684–3691; https://doi.org/10.1016/j.matpr.2020.11.405.Search in Google Scholar

36. Crisp, R. W., Hashemi, F. S. M., Alkemade, J., Kirkwood, N., Grimaldi, G., Kinge, S., Siebbeles, L. D. A., van Ommen, J. R., Houtepen, A. J. Atomic layer deposition of ZnO on InP quantum dot films for charge separation, stabilization, and solar cell formation. Adv. Mater. Interfaces 2020, 7, 1901600; https://doi.org/10.1002/admi.201901600.Search in Google Scholar

37. Edwards, P. P., Porch, A., Jones, M. O., Morgan, D. V., Perks, R. M. Basic materials physics of transparent conducting oxides. Dalton Trans. 2004, 19, 2995–3002; https://doi.org/10.1039/b408864f.Search in Google Scholar PubMed

38. Chen, Y., Fan, S. W., Xu, P. Defect induced ambipolar conductivity in wide-bandgap semiconductor SrS: theoretical perspectives. Appl. Phys. Lett. 2022, 121, 252102-1–252102-6; https://doi.org/10.1063/5.0125543.Search in Google Scholar

39. Chen, Y., Fan, S. W., Gao, G. Y. Theoretical insights into the defect performance of the wide bandgap semiconductor BaS. Phys. Chem. Chem. Phys. 2023, 25, 11745–11755; https://doi.org/10.1039/d3cp00240c.Search in Google Scholar PubMed

40. Chen, Y., Fan, S. W., Gao, G. Y. Design ambipolar conductivity on wide-gap semiconductors: the case of Al- and Na-doped CaS. Mater. Sci. Semicond. Process. 2022, 151, 107024; https://doi.org/10.1016/j.mssp.2022.107024.Search in Google Scholar

41. Stavrinadis, A., Pelli Cresi, J. S., D’Acapito, F., Magen, C., Boscherini, F., Konstantatos, G. Aliovalent doping in colloidal quantum dots and its manifestation on their optical properties: surface attachment versus structural incorporation. Chem. Mater. 2016, 28, 5384–5393; https://doi.org/10.1021/acs.chemmater.6b01445.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0006).


Received: 2023-02-10
Accepted: 2023-07-06
Published Online: 2023-07-25
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0006/html
Scroll to top button