Skip to main content

Advertisement

Log in

Pyroptosis in neurodegenerative diseases: from bench to bedside

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The central nervous system regulates all aspects of physiology to some extent. Neurodegenerative diseases (NDDs) lead to the progressive loss and dysfunction of neurons, which are particularly evident in Alzheimer’s disease, Parkinson’s disease, and many other conditions. NDDs are multifactorial diseases with complex pathogeneses, and there has been a rapid increase in the prevalence of NDDs. However, none of these diseases can be cured, making the development of novel treatment strategies an urgent necessity. Numerous studies have indicated how pyroptosis induces inflammation and affects many aspects of NDD. Therefore, components related to pyroptosis are potential therapeutic candidates and are attracting increasing attention. Here, we review the role of pyroptosis in the pathogenesis of NDDs and potential treatment options. Additionally, several of the current drugs and relevant inhibitors are discussed. Through this article, we provide theoretical support for exploring new therapeutic targets and updating clinical treatment strategies for NDDs. Notably, pyroptosis, a recently widely studied mode of cell death, is still under-researched compared to other traditional forms of cell death. Moreover, the focus of research has been on the onset and progression of NDDs, and the lack of organ-specific target discovery and drug development is a common problem for many basic studies. This urgent problem requires scientists and companies worldwide to collaborate in order to develop more effective drugs against NDDs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article. We also used data from https://platform.opentargets.org/.

Abbreviations

CNS:

central nervous system

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

NDDs:

neurodegenerative diseases

PNS:

peripheral nervous system

SCI:

spinal cord injury

ES:

epilepsy

ALS:

amyotrophic lateral sclerosis

HD:

Huntington’s disease

MS:

multiple sclerosis

CED-3:

cell death mutant 3

GSDM:

gasdermin

LPS:

lipopolysaccharide

IL:

interleukin

PRRs:

pattern recognition receptors

PAMPs:

pathogen-associated molecular patterns

DAMPs:

damage-associated molecular patterns

NLRs:

NOD-like receptors

NLRC4:

NLR family CARD domain-containing 4

NLRP3:

NOD-like receptor protein 3

NLRP6:

NOD-like receptor protein 6

CARD/ASC:

caspase recruitment domain

AIM2:

absent in melanoma 2

LRR:

leucine-rich repeat

PYD:

pyrin domain

GSDMD:

gasdermin D

FDA:

Food and Drug Administration

Aβ:

amyloid-β

MCNs:

mouse cortical neurons

NFTs:

neurofibrillary tangles

LiCl:

lithium chloride

FSK:

forskolin

TXNIP:

thioredoxin-interacting protein

ER:

endoplasmic reticulum

FTD:

frontotemporal dementia

αSyn:

α-synuclein

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

L-DOPA:

levodopa

ATP:

adenosine triphosphate

mHTT:

mutant huntingtin

Gal-3:

galectin-3

PMS:

progressive MS

PPMS:

relapsing-remitting MS

SPMS:

secondary progressive MS

ODCs:

oligodendrocytes

TNF-α:

tumor necrosis factor-α

EAE:

experimental autoimmune encephalomyelitis

ROS:

reactive oxygen species

JOA:

Japanese Orthopaedic Association

NDI:

neck disability index

CD73:

ecto-5′-nucleotidase

GFAP:

glial fibrillary acidic protein

MOG:

myelin oligodendrocyte glycoprotein

mRNA:

messenger ribonucleic acid

ADK:

adenosine kinase

KA:

kainic acid

TwFI:

Tripterygium wilfordii Hook F

IHC:

immunohistochemistry

miRNA:

microRNA

MSC:

mesenchymal stem cell

ADMSC:

adipose-derived MSC

Exo:

exosomal

LID:

levodopa-induced dyskinesia

Sal:

salidroside

PARP-1:

poly-(ADP-ribose) polymerase 1

NIIs:

neuronal intranuclear inclusions

DMF:

dimethyl fumarate

Cys:

cysteine

LDH:

lactate dehydrogenase

MMF:

2-monomethyl fumarate

GSDMD-N:

GSDMD-N-terminal domain

NT5E:

ecto-5′-nucleotidase

ASMs:

antiseizure medications

CLMD:

Chaihu-Longgu-Muli decoction

TCM:

traditional Chinese medicine

TLE:

temporal lobe epilepsy

CAPS:

cryopyrin-associated periodic syndrome

TYK2:

tyrosine kinase 2

WDL:

wedelolactone

IKK:

IκB kinase

References

  • Absinta M, Lassmann H, Trapp BD. Mechanisms underlying progression in multiple sclerosis. Curr Opin Neurol. 2020;33(3):277–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J. Human ICE/CED-3 protease nomenclature. Cell. 1996;87(2):171.

    Article  PubMed  CAS  Google Scholar 

  • Amo-Aparicio J, Garcia-Garcia J, Puigdomenech M, Francos-Quijorna I, Skouras DB, Dinarello CA, Lopez-Vales R. Inhibition of the NLRP3 inflammasome by OLT1177 induces functional protection and myelin preservation after spinal cord injury. Exp Neurol. 2021;347:113889.

    Article  PubMed  Google Scholar 

  • Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;21(20):7533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19(6):355–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci. 2016;10:98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anzilotti S, Giampà C, Laurenti D, Perrone L, Bernardi G, Melone MA, Fusco FR. Immunohistochemical localization of receptor for advanced glycation end (RAGE) products in the R6/2 mouse model of Huntington's disease. Brain Res Bull. 2012;87(2-3):350–8.

    Article  PubMed  CAS  Google Scholar 

  • Bai H, Zhang Q. Activation of NLRP3 inflammasome and onset of Alzheimer's disease. Front Immunol. 2021;12:701282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai Y, Liu D, Zhang H, Wang Y, Wang D, Cai H, Wen H, Yuan G, An H, Wang Y, Shi T, Wang Z. N-salicyloyl tryptamine derivatives as potential therapeutic agents for Alzheimer's disease with neuroprotective effects. Bioorg Chem. 2021;115:105255.

    Article  PubMed  CAS  Google Scholar 

  • Ball DP, Taabazuing CY, Griswold AR, Orth EL, Rao SD, Kotliar IB, Vostal LE, Johnson DC, Bachovchin DA. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci Alliance. 2020;3(3):201900564.

    Article  Google Scholar 

  • Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ. Huntington disease. Nat Rev Dis Primers. 2015;1:15005.

    Article  PubMed  Google Scholar 

  • Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021;397(10291):2284–303.

    Article  PubMed  CAS  Google Scholar 

  • Bongioanni P, Del Carratore R, Corbianco S, Diana A, Cavallini G, Masciandaro SM, Dini M, Buizza R. Climate change and neurodegenerative diseases. Environ Res. 2021;201:111511.

    Article  PubMed  CAS  Google Scholar 

  • Brahadeeswaran S, Sivagurunathan N, Calivarathan L. Inflammasome signaling in the aging brain and age-related neurodegenerative diseases. Mol Neurobiol. 2022;59(4):2288–304.

    Article  PubMed  CAS  Google Scholar 

  • Breijyeh Z, Karaman R. Comprehensive review on Alzheimer's disease: causes and treatment. Molecules. 2020;25(24):5789. https://doi.org/10.3390/molecules25245789.

  • Brown IR. Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci. 2007;1113:147–58.

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Chai Y, Fu Y, Wang Y, Zhang Y, Zhang X, Zhu L, Miao M, Yan T. Salidroside ameliorates Alzheimer's disease by targeting NLRP3 inflammasome-mediated pyroptosis. Front Aging Neurosci. 2021;13:809433.

    Article  PubMed  CAS  Google Scholar 

  • Chang KH, Wu YR, Chen YC, Chen CM. Plasma inflammatory biomarkers for Huntington's disease patients and mouse model. Brain Behav Immun. 2015;44:121–7.

    Article  PubMed  CAS  Google Scholar 

  • Chen SH, Lin JK, Liu SH, Liang YC, Lin-Shiau SY. Apoptosis of cultured astrocytes induced by the copper and neocuproine complex through oxidative stress and JNK activation. Toxicol Sci. 2008;102(1):138–49.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Chen YQ, Wang SN, Duan FX, Shi YJ, Ding SQ, Hu JG, Lü HZ. Effect of VX-765 on the transcriptome profile of mice spinal cords with acute injury. Mol Med Rep. 2020a;22(1):33–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Zhao Y, Luo W, Chen S, Lin F, Zhang X, Fan S, Shen X, Wang Y, Liang G. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Theranostics. 2020b;10(22):10290–308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Chen YQ, Shi YJ, Ding SQ, Shen L, Wang R, Wang QY, Zha C, Ding H, Hu JG, Lü HZ. VX-765 reduces neuroinflammation after spinal cord injury in mice. Neural Regen Res. 2021;16(9):1836–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen KP, Hua KF, Tsai FT, Lin TY, Cheng CY, Yang DI, Hsu HT, Ju TC. A selective inhibitor of the NLRP3 inflammasome as a potential therapeutic approach for neuroprotection in a transgenic mouse model of Huntington's disease. J Neuroinflammation. 2022;19(1):56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cleren C, Calingasan NY, Chen J, Beal MF. Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem. 2005;94(4):995–1004.

    Article  PubMed  CAS  Google Scholar 

  • Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, de Bernard M. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One. 2013;8(1):e55375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113–4.

    Article  PubMed  CAS  Google Scholar 

  • Dai W, Wang X, Teng H, Li C, Wang B, Wang J. Celastrol inhibits microglial pyroptosis and attenuates inflammatory reaction in acute spinal cord injury rats. Int Immunopharmacol. 2019;66:215–23.

    Article  PubMed  CAS  Google Scholar 

  • D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92.

    Article  PubMed  Google Scholar 

  • Davis SM, Pennypacker KR. Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem Int. 2017;107:23–32.

    Article  PubMed  CAS  Google Scholar 

  • de Brito C, Toscano E, Vieira ÉLM, Dias BBR, Caliari MV, Gonçalves AP, Giannetti AV, Siqueira JM, Suemoto CK, Leite REP, Nitrini R, Rachid MA, Teixeira AL. NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res. 2021;1752:147230.

    Article  Google Scholar 

  • De Vries LCS, Ghiboub M, van Hamersveld PHP, Welting O, Verseijden C, Bell MJ, Rioja I, Prinjha RK, Koelink PJ, Strobl B, Muller M, D'Haens GR, Wildenberg ME, De Jonge WJ. Tyrosine kinase 2 signalling drives pathogenic T cells in colitis. J Crohns Colitis. 2021;15(4):617–30.

    Article  PubMed  Google Scholar 

  • Deng C, Zhang Q, He P, Zhou B, He K, Sun X, Lei G, Gong T, Zhang Z. Targeted apoptosis of macrophages and osteoclasts in arthritic joints is effective against advanced inflammatory arthritis. Nat Commun. 2021;12(1):2174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Luca DG, Reyes NGD, Fox SH. Newly Approved and investigational drugs for motor symptom control in Parkinson's disease. Drugs. 2022;82(10):1027–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding W, Hu S, Wang P, Kang H, Peng R, Dong Y, Li F. Spinal cord injury: the global incidence, prevalence, and disability from the Global Burden of Disease Study 2019. Spine. 2022;47(21):1532–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobson R, Giovannoni G. Multiple sclerosis - a review. Eur J Neurol. 2019;26(1):27–40.

    Article  PubMed  CAS  Google Scholar 

  • Doering TL. Dismantling the Cryptococcus coat - response from doering. Trends Microbiol. 2001;9(3):113.

    Article  CAS  Google Scholar 

  • Dorsey ER, Elbaz A, Nichols E, Abbasi N, Abd-Allah F, Abdelalim A, Adsuar JC, Ansha MG, Brayne C, Choi JY, Collado-Mateo D. Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–53.

    Article  Google Scholar 

  • Downs KP, Nguyen H, Dorfleutner A, Stehlik C. An overview of the non-canonical inflammasome. Mol Asp Med. 2020;76:100924.

    Article  CAS  Google Scholar 

  • Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44(6):817–29.

    Article  PubMed  CAS  Google Scholar 

  • Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4):a033118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang G, Tang B. Current advances in the nano-delivery of celastrol for treating inflammation-associated diseases. J Mater Chem B. 2020;8(48):10954–65.

    Article  PubMed  CAS  Google Scholar 

  • Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev. 2020;64:101192.

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Li M, Yangzhong X, Zhang X, Zu A, Hou Y, Li L, Sun S. Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem. 2022;78(4):721–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fensome A, Ambler CM, Arnold E, Banker ME, Brown MF, Chrencik J, Clark JD, Dowty ME, Efremov IV, Flick A, Gerstenberger BS, Gopalsamy A, Hayward MM, Hegen M, Hollingshead BD, Jussif J, Knafels JD, Limburg DC, Lin D, et al. Dual inhibition of TYK2 and JAK1 for the treatment of autoimmune diseases: discovery of (( S)-2,2-difluorocyclopropyl)((1 R,5 S)-3-(2-((1-methyl-1 H-pyrazol-4-yl)amino)pyrimidin-4-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl) methanone (PF-06700841). J Med Chem. 2018;61(19):8597–612.

    Article  PubMed  CAS  Google Scholar 

  • Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J, Pringsheim T, Lorenzetti DL, Jetté N. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurol. 2017;88(3):296–303.

    Article  Google Scholar 

  • Fine A, Wirrell EC. Seizures in Children. Pediatr Rev. 2020;41(7):321–47.

    Article  PubMed  Google Scholar 

  • Flores J, Noël A, Foveau B, Beauchet O, LeBlanc AC. Pre-symptomatic caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. Nat Commun. 2020;11(1):4571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forman MS, Trojanowski JQ, Lee VM. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med. 2004;10(10):1055–63.

    Article  PubMed  CAS  Google Scholar 

  • Frank S, Testa CM, Stamler D, Kayson E, Davis C, Edmondson MC, Kinel S, Leavitt B, Oakes D, O'Neill C, Vaughan C, Goldstein J, Herzog M, Snively V, Whaley J, Wong C, Suter G, Jankovic J, Jimenez-Shahed J, et al. Effect of deutetrabenazine on chorea among patients with Huntington disease: a randomized clinical trial. Jama. 2016;316(1):40–50.

    Article  PubMed  CAS  Google Scholar 

  • Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, Brenker C, Nordhoff M, Mirandola SR, Al-Amoudi A, Mangan MS, Zimmer S, Monks BG, Fricke M, Schmidt RE, Espevik T, Jones B, Jarnicki AG, Hansbro PM, et al. The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nat Immunol. 2014;15(8):727–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal cell death. Physiol Rev. 2018;98(2):813–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, Robertson AAB, Butler MS, Rowe DB, O'Neill LA, Kanthasamy AG, Schroder K, Cooper MA, Woodruff TM. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. 2018;10(465):eaah4066.

    Article  PubMed  PubMed Central  Google Scholar 

  • Green DR. Caspase activation and inhibition. Cold Spring Harb Perspect Biol. 2022;14(8):a041020.

    Article  PubMed  CAS  Google Scholar 

  • Han C, Yang Y, Guan Q, Zhang X, Shen H, Sheng Y, Wang J, Zhou X, Li W, Guo L, Jiao Q. New mechanism of nerve injury in Alzheimer's disease: beta-amyloid-induced neuronal pyroptosis. J Cell Mol Med. 2020;24(14):8078–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han C, Hu Q, Yu A, Jiao Q, Yang Y. Mafenide derivatives inhibit neuroinflammation in Alzheimer's disease by regulating pyroptosis. J Cell Mol Med. 2021a;25(22):10534–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han X, Xu T, Fang Q, Zhang H, Yue L, Hu G, Sun L. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol. 2021b;44:102010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK. Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease. Mov Disord. 2020;35(1):20–33.

    Article  PubMed  CAS  Google Scholar 

  • He Q, Jiang L, Man S, Wu L, Hu Y, Chen W. Curcumin reduces neuronal loss and inhibits the NLRP3 inflammasome activation in an epileptic rat model. Curr Neurovasc Res. 2018;15(3):186–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He M, Wu DM, Zhao YY, Yu Y, Deng SH, Liu T, Zhang T, Li J, Wang F, Xu Y. AZD8055 ameliorates experimental autoimmune encephalomyelitis via the mTOR/ROS/NLRP3 pathway. Biochem Biophys Res Commun. 2021a;573:27–34.

    Article  PubMed  CAS  Google Scholar 

  • He X, Fan X, Bai B, Lu N, Zhang S, Zhang L. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res. 2021b;165:105447.

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock EM, Sulston JE, Thomson JN. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Sci. 1983;220(4603):1277–9.

    Article  CAS  Google Scholar 

  • Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–8.

    Article  PubMed  CAS  Google Scholar 

  • Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565–81.

    Article  PubMed  Google Scholar 

  • Hou J, Hsu JM, Hung MC. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity. Mol Cell. 2021;81(22):4579–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu M, Luo Q, Alitongbieke G, Chong S, Xu C, Xie L, Chen X, Zhang D, Zhou Y, Wang Z, Ye X, Cai L, Zhang F, Chen H, Jiang F, Fang H, Yang S, Liu J, Diaz-Meco MT, et al. Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell. 2017;66(1):141–153.e146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu H, Zhu T, Gong L, Zhao Y, Shao Y, Li S, Sun Z, Ling Y, Tao Y, Ying Y, Lan C, Xie Y, Jiang P. Transient receptor potential melastatin 2 contributes to neuroinflammation and negatively regulates cognitive outcomes in a pilocarpine-induced mouse model of epilepsy. Int Immunopharmacol. 2020a;87:106824.

    Article  PubMed  CAS  Google Scholar 

  • Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, Ruan J, Luo X, Lou X, Bai Y, Wang J, Hollingsworth LR, Magupalli VG, Zhao L, Luo HR, Kim J, Lieberman J, Wu H. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020b;21(7):736–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Humke EW, Ni J, Dixit VM. ERICE, a novel FLICE-activatable caspase. J Biol Chem. 1998;273(25):15702–7.

    Article  PubMed  CAS  Google Scholar 

  • Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, Li S, Wang B, Nemmara VV, Wilson R, Jiang Z, Khalighinejad F, Muneeruddin K, Shaffer SA, Dutta R, Ionete C, Pesiridis S, Yang S, Thompson PR, Fitzgerald KA. Succination inactivates gasdermin D and blocks pyroptosis. Sci. 2020;369(6511):1633–7.

    Article  CAS  Google Scholar 

  • Hung-Ming W, Liu CS, Tsai JJ, Ko LY, Wei YH. Antioxidant and anticonvulsant effect of a modified formula of chaihu-longu-muli-tang. Am J Chin Med. 2002;30(2-3):339–46.

    PubMed  CAS  Google Scholar 

  • Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurol. 2006;66(3):366–72.

    Article  Google Scholar 

  • Ising C, Heneka MT. Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death Dis. 2018;9(2):120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, Wang A, Tao J, Wang C, Liu Q, Jin T, Jiang W, Deng X, Zhou R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 2017a;214(11):3219–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang W, Li M, He F, Zhou S, Zhu L. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation. 2017b;14(1):207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karjalainen A, Shoebridge S, Krunic M, Simonović N, Tebb G, Macho-Maschler S, Strobl B, Müller M. TYK2 in tumor immunosurveillance. Cancers. 2020;12(1):150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karsy M, Hawryluk G. Modern Medical Management of Spinal Cord Injury. Curr Neurol Neurosci Rep. 2019;19(9):65.

    Article  PubMed  Google Scholar 

  • Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM. Non-canonical inflammasome activation targets caspase-11. Nat. 2011;479(7371):117–21.

    Article  CAS  Google Scholar 

  • Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler. 2017;23(8):1123–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobori M, Yang Z, Gong D, Heissmeyer V, Zhu H, Jung YK, Gakidis MA, Rao A, Sekine T, Ikegami F, Yuan C, Yuan J. Wedelolactone suppresses LPS-induced caspase-11 expression by directly inhibiting the IKK complex. Cell Death Differ. 2004;11(1):123–30.

    Article  PubMed  CAS  Google Scholar 

  • Kulbay M, Paimboeuf A, Ozdemir D, Bernier J. Review of cancer cell resistance mechanisms to apoptosis and actual targeted therapies. J Cell Biochem. 2022;123(11):1736–61.

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Kang SR, Yune TY. Fluoxetine prevents oligodendrocyte cell death by inhibiting microglia activation after spinal cord injury. J Neurotrauma. 2015;32(9):633–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee S, Choi B, Kim SJ, Kim J, Kang D, Lee J. Relationship between freshwater harmful algal blooms and neurodegenerative disease incidence rates in South Korea. Environ Health. 2022;21(1):116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72.

    Article  PubMed  Google Scholar 

  • Li R, Zhu S. NLRP6 inflammasome. Mol Asp Med. 2020;76:100859.

    Article  CAS  Google Scholar 

  • Li Y, Zhao J, Hölscher C. Therapeutic potential of baicalein in Alzheimer's disease and Parkinson's disease. CNS Drugs. 2017;31(8):639–52.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wu DM, Yu Y, Deng SH, Liu T, Zhang T, He M, Zhao YY, Xu Y. Amifostine ameliorates induction of experimental autoimmune encephalomyelitis: effect on reactive oxygen species/NLRP3 pathway. Int Immunopharmacol. 2020a;88:106998.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Xu P, Shan J, Sun W, Ji X, Chi T, Liu P, Zou L. Interaction between hyperphosphorylated tau and pyroptosis in forskolin and streptozotocin induced AD models. Biomed Pharmacother. 2020b;121:109618.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Lin J, Hua Y, Gong J, Ding S, Du Y, Wang X, Zheng R, Xu H. Agmatine alleviates epileptic seizures and hippocampal neuronal damage by inhibiting gasdermin D-mediated pyroptosis. Front Pharmacol. 2021;12:627557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin CC, Shieh DE. The anti-inflammatory activity of Scutellaria rivularis extracts and its active components, baicalin, baicalein and wogonin. Am J Chin Med. 1996;24(1):31–6.

    Article  PubMed  CAS  Google Scholar 

  • Lin W-P, Xiong G-P, Lin Q, Chen X-W, Zhang L-Q, Shi J-X, Ke Q-F, Lin J-H. Heme oxygenase-1 promotes neuron survival through down-regulation of neuronal NLRP1 expression after spinal cord injury. J Neuroinflammation. 2016;13(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Linden J, Koch-Nolte F, Dahl G. Purine release, metabolism, and signaling in the inflammatory response. Annu Rev Immunol. 2019;37:325–47.

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U. Treatment of obesity with celastrol. Cell. 2015;161(5):999–1011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nat. 2016;535(7610):153–8.

    Article  CAS  Google Scholar 

  • Liu F, Li Z, He X, Yu H, Feng J. Ghrelin attenuates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis involving NLRP3 inflammasome signaling pathway and pyroptosis. Front Pharmacol. 2019;10:1320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Yao X, Sun B, Jiang W, Liao C, Dai X, Chen Y, Chen J, Ding R. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med. 2021;168:142–54.

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72(3):606–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Liu Y, Zhou J, Li D, Gao W. Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol. Med Res Rev. 2021;41(2):1022–60.

    Article  PubMed  CAS  Google Scholar 

  • Lv R, Du L, Liu X, Zhou F, Zhang Z, Zhang L. Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int Immunopharmacol. 2019;70:28–36.

    Article  PubMed  CAS  Google Scholar 

  • Malko P, Jiang LH. TRPM2 channel-mediated cell death: an important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol. 2020;37:101755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol. 2016;46(2):269–80.

    Article  PubMed  CAS  Google Scholar 

  • Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchesan JT, Girnary MS, Moss K, Monaghan ET, Egnatz GJ, Jiao Y, Zhang S, Beck J, Swanson KV. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontol. 2020;82(1):93–114.

    Article  Google Scholar 

  • McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. Jama. 2021;325(8):765–79.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie BA, Mamik MK, Saito LB, Boghozian R, Monaco MC, Major EO, Lu JQ, Branton WG, Power C. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci U S A. 2018;115(26):E6065–e6074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKenzie BA, Dixit VM, Power C. Fiery cell death: pyroptosis in the central nervous system. Trends Neurosci. 2020;43(1):55–73.

    Article  PubMed  CAS  Google Scholar 

  • Medeiros R, Baglietto-Vargas D, LaFerla FM. The role of tau in Alzheimer's disease and related disorders. CNS Neurosci Ther. 2011;17(5):514–24.

    Article  PubMed  CAS  Google Scholar 

  • Medina A, Mahjoub Y, Shaver L, Pringsheim T. Prevalence and incidence of Huntington's disease: an updated systematic review and meta-analysis. Mov Disord. 2022;37(12):2327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neel DV, Basu H, Gunner G, Bergstresser MD, Giadone RM, Chung H, Miao R, Chou V, Brody E, Jiang X, Lee E, Watts ME, Marques C, Held A, Wainger B, Lagier-Tourenne C, Zhang YJ, Petrucelli L, Young-Pearse TL, et al. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron. 2023;111(8):1222–1240.e1229.

    Article  PubMed  CAS  Google Scholar 

  • Oh J, Vidal-Jordana A, Montalban X. Multiple sclerosis: clinical aspects. Curr Opin Neurol. 2018;31(6):752–9.

    Article  PubMed  Google Scholar 

  • Ohto U. Activation and regulation mechanisms of NOD-like receptors based on structural biology. Front Immunol. 2022;13:953530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osoegawa M, Kira J, Fukazawa T, Fujihara K, Kikuchi S, Matsui M, Kohriyama T, Sobue G, Yamamura T, Itoyama Y, Saida T, Sakata K, Ochi H, Matsuoka T. Temporal changes and geographical differences in multiple sclerosis phenotypes in Japanese: nationwide survey results over 30 years. Mult Scler. 2009;15(2):159–73.

    Article  PubMed  CAS  Google Scholar 

  • Pace S, Zhang K, Jordan PM, Bilancia R, Wang W, Börner F, Hofstetter RK, Potenza M, Kretzer C, Gerstmeier J, Fischer D, Lorkowski S, Gilbert NC, Newcomer ME, Rossi A, Chen X, Werz O. Anti-inflammatory celastrol promotes a switch from leukotriene biosynthesis to formation of specialized pro-resolving lipid mediators. Pharmacol Res. 2021;167:105556.

    Article  PubMed  CAS  Google Scholar 

  • Paldino E, D'Angelo V, Laurenti D, Angeloni C, Sancesario G, Fusco FR. Modulation of inflammasome and pyroptosis by olaparib, a PARP-1 inhibitor, in the R6/2 mouse model of Huntington's disease. Cells. 2020a;9(10):2286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paldino E, D'Angelo V, Sancesario G, Fusco FR. Pyroptotic cell death in the R6/2 mouse model of Huntington's disease: new insight on the inflammasome. Cell Death Dis. 2020b;6:69.

    Article  CAS  Google Scholar 

  • Papp K, Gordon K, Thaci D, Morita A, Gooderham M, Foley P, Girgis IG, Kundu S, Banerjee S. Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 2018;379(14):1313–21.

    Article  PubMed  CAS  Google Scholar 

  • Paranjpe MD, Taubes A, Sirota M. Insights into computational drug repurposing for neurodegenerative disease. Trends Pharmacol Sci. 2019;40(8):565–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park SE, Sapkota K, Kim S, Kim H, Kim SJ. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol. 2011;164(3):1008–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrović A, Kaur J, Tomljanović I, Nistri A, Mladinic M. Pharmacological induction of Heat Shock Protein 70 by celastrol protects motoneurons from excitotoxicity in rat spinal cord in vitro. Eur J Neurosci. 2019;49(2):215–31.

    Article  PubMed  Google Scholar 

  • Piehl F. Current and emerging disease-modulatory therapies and treatment targets for multiple sclerosis. J Intern Med. 2021;289(6):771–91.

    Article  PubMed  CAS  Google Scholar 

  • Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys. 2019;670:4–14.

    Article  PubMed  CAS  Google Scholar 

  • Poelzl A, Lassnig C, Tangermann S, Hromadová D, Reichart U, Gawish R, Mueller K, Moriggl R, Linkermann A, Glösmann M, Kenner L, Mueller M, Strobl B. TYK2 licenses non-canonical inflammasome activation during endotoxemia. Cell Death Differ. 2021;28(2):748–63.

    Article  PubMed  CAS  Google Scholar 

  • Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.

    Article  PubMed  Google Scholar 

  • Qiu N, Liu Y, Liu Q, Chen Y, Shen L, Hu M, Zhou X, Shen Y, Gao J, Huang L. Celastrol nanoemulsion induces immunogenicity and downregulates PD-L1 to boost abscopal effect in melanoma therapy. Biomater. 2021;269:120604.

    Article  CAS  Google Scholar 

  • Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat. 2020;104:101752.

    Article  PubMed  CAS  Google Scholar 

  • Rai SN, Chaturvedi VK, Singh P, Singh BK, Singh MP. Mucuna pruriens in Parkinson's and in some other diseases: recent advancement and future prospective. Biotech. 2020;10(12):522.

    Google Scholar 

  • Rai SN, Singh P, Varshney R, Chaturvedi VK, Vamanu E, Singh MP, Singh BK. Promising drug targets and associated therapeutic interventions in Parkinson's disease. Neural Regen Res. 2021;16(9):1730–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramos-Hryb AB, Pazini FL, Kaster MP, Rodrigues ALS. Therapeutic potential of ursolic acid to manage neurodegenerative and psychiatric diseases. CNS Drugs. 2017;31(12):1029–41.

    Article  PubMed  CAS  Google Scholar 

  • Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016;165(4):792–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reiner A, Albin RL, Anderson KD, D'Amato CJ, Penney JB, Young AB. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A. 1988;85(15):5733–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A, Wu W, Goessl C, Runswick S, Conte P. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33.

    Article  PubMed  CAS  Google Scholar 

  • Rui W, Li S, Xiao H, Xiao M, Shi J. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson's disease. Int J Neuropsychopharmacol. 2020a;23(11):762–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz F, Vigne S, Pot C. Resolution of inflammation during multiple sclerosis. Semin Immunopathol. 2019;41(6):711–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sánchez Fernández I, Goodkin HP, Scott RC. Pathophysiology of convulsive status epilepticus. Seizure. 2019;68:16–21.

    Article  PubMed  Google Scholar 

  • Sander JW, Shorvon SD. Epidemiology of the epilepsies. J Neurol Neurosurg Psychiatry. 1996;61(5):433–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santoni K, Pericat D, Gorse L, Buyck J, Pinilla M, Prouvensier L, Bagayoko S, Hessel A, Leon-Icaza SA, Bellard E, Mazères S, Doz-Deblauwe E, Winter N, Paget C, Girard JP, Pham CTN, Cougoule C, Poincloux R, Lamkanfi M, et al. Caspase-1-driven neutrophil pyroptosis and its role in host susceptibility to Pseudomonas aeruginosa. PLoS Pathog. 2022;18(7):e1010305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM. Alzheimer's disease. Lancet. 2021;397(10284):1577–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schiavone S, Tucci P, Trabace L, Morgese MG. Early celastrol administration prevents ketamine-induced psychotic-like behavioral dysfunctions, oxidative stress and IL-10 reduction in the cerebellum of adult mice. Mol. 2019;24(21):3993.

    Article  CAS  Google Scholar 

  • Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22(4):526–39.

    Article  PubMed  CAS  Google Scholar 

  • Shao F. Gasdermins: making pores for pyroptosis. Nat Rev Immunol. 2021;21(10):620–1.

    Article  PubMed  CAS  Google Scholar 

  • Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 2021;22(5):550–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma S, Trivedi S, Pandey T, Ranjan S, Trivedi M, Pandey R. Wedelolactone mitigates parkinsonism via alleviating oxidative stress and mitochondrial dysfunction through NRF2/SKN-1. Mol Neurobiol. 2021;58(1):65–77.

    Article  PubMed  Google Scholar 

  • Sharma N, Soni R, Sharma M, Chatterjee S, Parihar N, Mukarram M, Kale R, Sayyed AA, Behera SK, Khairnar A. Chlorogenic acid: a polyphenol from coffee rendered neuroprotection against rotenone-induced Parkinson's disease by GLP-1 secretion. Mol Neurobiol. 2022;59(11):6834–56.

    Article  PubMed  CAS  Google Scholar 

  • Sheng Y, Zhou X, Wang J, Shen H, Wu S, Guo W, Yang Y. MSC derived EV loaded with miRNA-22 inhibits the inflammatory response and nerve function recovery after spinal cord injury in rats. J Cell Mol Med. 2021;25(21):10268–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–54.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi Y, Kimura A, Kimura H, Ohmori T, Takahashi M, Takeshita K. Deletion of inflammasome adaptor protein ASC enhances functional recovery after spinal cord injury in mice. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association. 2021;26(3):487–93.

    Article  PubMed  Google Scholar 

  • Siew JJ, Chen HM, Chen HY, Chen HL, Chen CM, Soong BW, Wu YR, Chang CP, Chan YC, Lin CH, Liu FT, Chern Y. Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington's disease. Nat Commun. 2019;10(1):3473.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh B, Pandey S, Verma R, Ansari JA, Mahdi AA. Comparative evaluation of extract of Bacopa monnieri and Mucuna pruriens as neuroprotectant in MPTP model of Parkinson’s disease. Indian J Exp Biol. 2016;54(11):758–66.

    PubMed  Google Scholar 

  • Singh SS, Rai SN, Birla H, Zahra W, Kumar G, Gedda MR, Tiwari N, Patnaik R, Singh RK, Singh SP. Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse. Front Pharmacol. 2018;9:757.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RSP, Pradhan V, Roberts ES, Scaramozza M, Kieras E, Gale JD, Peeva E, Vincent MS, Banerjee A, Fensome A, Dowty ME, Winkle P, Tehlirian C. Safety and pharmacokinetics of the oral TYK2 inhibitor PF-06826647: a phase I, randomized, double-blind, placebo-controlled, dose-escalation study. Clin Transl Sci. 2021;14(2):671–82.

    Article  PubMed  CAS  Google Scholar 

  • Sons JW. Alzheimer's disease facts and figures. Alzheimers Dement. 2021;17(3):327–406.

    Article  Google Scholar 

  • Stefanoska K, Gajwani M, Tan ARP, Ahel HI, Asih PR, Volkerling A, Poljak A, Ittner A. Alzheimer's disease: ablating single master site abolishes tau hyperphosphorylation. Sci Adv. 2022;8(27):eabl8809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Y, Huang W-M, Tang P-C, Zhang X, Zhang X-Y, Yu B-C, Fan Y-Y, Ge X-Q, Zhang X-L. Neuroprotective effects of natural cordycepin on LPS-induced Parkinson’s disease through suppressing TLR4/NF-κB/NLRP3-mediated pyroptosis. J Funct Foods. 2020;75:104274.

    Article  CAS  Google Scholar 

  • Tan HY, Wan C, Wu GL, Qiao LJ, Cai YF, Wang Q, Zhang SJ. Taohong siwu decoction ameliorates cognitive dysfunction through SIRT6/ER stress pathway in Alzheimer's disease. J Ethnopharmacol. 2023;314:116580.

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM, Teleanu RI. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 2022;23(11):5938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turtle JD, Strain MM, Reynolds JA, Huang YJ, Lee KH, Henwood MK, Garraway SM, Grau JW. Pain input after spinal cord injury (SCI) undermines long-term recovery and engages signal pathways that promote cell death. Front Syst Neurosci. 2018;12:27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, Vieira-Saecker A, Schwartz S, Santarelli F, Kummer MP, Griep A, Gelpi E, Beilharz M, Riedel D, Golenbock DT, Geyer M, Walter J, Latz E, Heneka MT. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nat. 2017;552(7685):355–61.

    Article  CAS  Google Scholar 

  • Venkatesha SH, Moudgil KD. Celastrol suppresses experimental autoimmune encephalomyelitis via MAPK/SGK1-regulated mediators of autoimmune pathology. Inflamm Res. 2019;68(4):285–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med. 2019;11(6):e10248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev Neurosci. 2014;15(2):84–97.

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Ruan J. Mechanistic insights into gasdermin pore formation and regulation in pyroptosis. J Mol Biol. 2022;434(4):167297.

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Miura M, Jung Y, Zhu H, Gagliardini V, Shi L, Greenberg AH, Yuan J. Identification and characterization of Ich-3, a member of the interleukin-1beta converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J Biol Chem. 1996;271(34):20580–7.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Cao L, Xu LM, Cao FF, Peng B, Zhang X, Shen YF, Uzan G, Zhang DH. Celastrol ameliorates EAE induction by suppressing pathogenic T cell responses in the peripheral and central nervous systems. J NeuroImmune Pharmacol. 2015;10(3):506–16.

    Article  PubMed  Google Scholar 

  • Wang W, Nguyen LTT, Burlak C, Chegini F, Guo F, Chataway T, Ju S, Fisher OS, Miller DW, Datta D, Wu F, Wu C-X, Landeru A, Wells JA, Cookson MR, Boxer MB, Thomas CJ, Gai WP, Ringe D, et al. Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein. Proc Natl Acad Sci U S A. 2016;113(34):9587–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Liu Z, Hu S, Duan X, Zhang Y, Peng C, Peng D, Han L. Taohong Siwu decoction ameliorates ischemic stroke injury via suppressing pyroptosis. Front Pharmacol. 2020;11:590453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Yao J, Liu Y, Huang L. Targeting the gasdermin D as a strategy for ischemic stroke therapy. Biochem Pharmacol. 2021a;188:114585.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Gao F, Xu W, Cao Y, Wang J, Zhu G. Depichering the effects of astragaloside IV on AD-like phenotypes: a systematic and experimental investigation. Oxidative Med Cell Longev. 2021b;2021:1020614.

    Article  Google Scholar 

  • Wang XJ, Qi L, Cheng YF, Ji XF, Chi TY, Liu P, Zou LB. PINK1 overexpression prevents forskolin-induced tau hyperphosphorylation and oxidative stress in a rat model of Alzheimer's disease. Acta Pharmacol Sin. 2022;43(8):1916–27.

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Zhao B, Gao W, Song W, Hou J, Zhang L, Xia Z. Inhibition of PINK1-mediated mitophagy contributes to postoperative cognitive dysfunction through activation of caspase-3/GSDME-dependent pyroptosis. ACS Chem Neurosci. 2023;14(7):1249–60.

    Article  PubMed  CAS  Google Scholar 

  • Wertz MH, Pineda SS, Lee H, Kulicke R, Kellis M, Heiman M. Interleukin-6 deficiency exacerbates Huntington's disease model phenotypes. Mol Neurodegener. 2020;15(1):29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson DM 3rd, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell. 2023;186(4):693–714.

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Zhang G, Chen L, Kim S, Yu J, Hu G, Chen J, Huang Y, Zheng G, Huang S. The role of NLRP3 and IL-1β in refractory epilepsy brain injury. Front Neurol. 2019a;10:1418.

    Article  PubMed  Google Scholar 

  • Wu Q, Wang J, Wang Y, Xiang L, Tan Y, Feng J, Zhang Z, Zhang L. Targeted delivery of celastrol to glomerular endothelium and podocytes for chronic kidney disease treatment. Nano Res. 2022;15(4):3556–68.

    Article  PubMed  CAS  Google Scholar 

  • Xia S, Yang P, Li F, Yu Q, Kuang W, Zhu Y, Lu J, Wu H, Li L, Huang H. Chaihu-Longgu-Muli decoction exerts an antiepileptic effect in rats by improving pyroptosis in hippocampal neurons. J Ethnopharmacol. 2021;270:113794.

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Liu X, Liu X, Shi Y, Jin X, Zhang N, Li X, Zhang H. Wedelolactone ameliorates Pseudomonas aeruginosa-induced inflammation and corneal injury by suppressing caspase-4/5/11/GSDMD-mediated non-canonical pyroptosis. Exp Eye Res. 2021;211:108750.

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Wang J, Zhong J, Shao M, Jiang J, Song J, Zhu W, Zhang F, Xu H, Xu G, Zhang Y, Ma X, Lyu F. CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling. Clin Transl Med. 2021b;11(1):e269.

    Article  PubMed  CAS  Google Scholar 

  • Xue W, Cui D, Qiu Y. Research progress of pyroptosis in Alzheimer's disease. Front Mol Neurosci. 2022;15:872471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamout BI, Alroughani R. Multiple sclerosis. Semin Neurol. 2018;38(2):212–25.

    Article  PubMed  Google Scholar 

  • Yap JKY, Pickard BS, Chan EWL, Gan SY. The role of neuronal NLRP1 inflammasome in Alzheimer's disease: bringing neurons into the neuroinflammation game. Mol Neurobiol. 2019;56(11):7741–53.

    Article  PubMed  CAS  Google Scholar 

  • Ye Q, Wang Q, Lee W, Xiang Y, Yuan J, Zhang Y, Guo X. A pore forming toxin-like protein derived from chinese red belly toad Bombina maxima triggers the pyroptosis of hippomal neural cells and impairs the cognitive ability of mice. Toxins. 2023;15(3):191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yun YI, Park SY, Lee HJ, Ko JH, Kim MK, Wee WR, Reger RL, Gregory CA, Choi H, Fulcher SF, Prockop DJ, Oh JY. Comparison of the anti-inflammatory effects of induced pluripotent stem cell-derived and bone marrow-derived mesenchymal stromal cells in a murine model of corneal injury. Cytotherapy. 2017;19(1):28–35.

    Article  PubMed  CAS  Google Scholar 

  • Zhai L, Shen H, Sheng Y, Guan Q. ADMSC Exo-MicroRNA-22 improve neurological function and neuroinflammation in mice with Alzheimer's disease. J Cell Mol Med. 2021;25(15):7513–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Zhang Y, Li R, Zhu L, Fu B, Yan T. Salidroside ameliorates Parkinson's disease by inhibiting NLRP3-dependent pyroptosis. Aging. 2020a;12(10):9405–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang C, Zhao M, Wang B, Su Z, Guo B, Qin L, Zhang W, Zheng R. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson's disease. Redox Biol. 2021a;47:102134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Zhong RJ, Cheng C, Li S, Le WD. New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer's disease. Acta Pharmacol Sin. 2021b;42(9):1382–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Yu S, Xia L, Peng X, Wang S, Yao B. NLRP3 Inflammasome activation enhances ADK expression to accelerate epilepsy in mice. Neurochem Res. 2021c;47:713–22.

    Article  PubMed  Google Scholar 

  • Zhang WJ, Chen SJ, Zhou SC, Wu SZ, Wang H. Inflammasomes and fibrosis. Front Immunol. 2021d;12:643149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang YF, Zhou L, Mao HQ, Yang FH, Chen Z, Zhang L. Mitochondrial DNA leakage exacerbates odontoblast inflammation through gasdermin D-mediated pyroptosis. Cell Death Dis. 2021e;7(1):381.

    Article  CAS  Google Scholar 

  • Zhang W, Wang J, Yang C. Celastrol, a TFEB (transcription factor EB) agonist, is a promising drug candidate for Alzheimer disease. Autophagy. 2022;18(7):1740–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Tian Y, Feng T. Sodium houttuyfonate ameliorates beta-amyloid1-42-induced memory impairment and neuroinflammation through inhibiting the NLRP3/GSDMD pathway in Alzheimer's disease. Mediat Inflamm. 2021;2021:8817698.

    Article  Google Scholar 

  • Zou J, Zheng Y, Huang Y, Tang D, Kang R, Chen R. The versatile gasdermin family: their function and roles in diseases. Front Immunol. 2021;12:751533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nat. 1992;358(6382):167–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all the authors for their work and dedication.

Code availability

Not applicable.

Funding

Partial financial support was received from the National Natural Science Foundation of China (No. 82101337) and a BSKY Scientific Research Grant from Anhui Medical University (XJ201813).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ke-jia Wu, Wan-rong Wang, Qian-hui Cheng, Hao Li, Wei-zhen Yan, Fei-ran Zhou, Rui-jie Zhang; methodology: Ke-jia Wu, Wan-rong Wang, Qian-hui Cheng, Hao Li, Wei-zhen Yan, Fei-ran Zhou, Rui-jie Zhang; formal analysis and investigation: Ke-jia Wu, Wan-rong Wang, Qian-hui Cheng, Hao Li, Wei-zhen Yan, Fei-ran Zhou, Rui-jie Zhang; writing—original draft preparation: Ke-jia Wu, Wan-rong Wang, Qian-hui Cheng, Hao Li, Wei-zhen Yan, Fei-ran Zhou, Rui-jie Zhang; writing—review and editing: Ke-jia Wu, Wan-rong Wang, Qian-hui Cheng, Hao Li, Wei-zhen Yan, Fei-ran Zhou, Rui-jie Zhang; funding acquisition: Ke-jia Wu, Wan-rong Wang, Qian-hui Cheng, Hao Li, Wei-zhen Yan, Fei-ran Zhou, Rui-jie Zhang; resources: Ke-jia Wu, Wan-rong Wang, Qian-hui Cheng, Hao Li, Wei-zhen Yan, Fei-ran Zhou, Rui-jie Zhang; supervision: Ke-jia Wu, Wan-rong Wang, Qian-hui Cheng, Hao Li, Wei-zhen Yan, Fei-ran Zhou, Rui-jie Zhang

Corresponding author

Correspondence to Rui-jie Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Written informed consent was collected from all participants before enrollment.

Consent for publication

All contributing authors agree to the publication of this article.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Kj., Wang, Wr., Cheng, Qh. et al. Pyroptosis in neurodegenerative diseases: from bench to bedside. Cell Biol Toxicol 39, 2467–2499 (2023). https://doi.org/10.1007/s10565-023-09820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-023-09820-x

Keywords

Navigation