Skip to main content
Log in

Strategies for acquisition of resonance assignment spectra of highly dynamic membrane proteins: a GPCR case study

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In protein nuclear magnetic resonance (NMR), chemical shift assignment provides a wealth of information. However, acquisition of high-quality solid-state NMR spectra depends on protein-specific dynamics. For membrane proteins, bilayer heterogeneity further complicates this observation. Since the efficiency of cross-polarization transfer is strongly entwined with protein dynamics, optimal temperatures for spectral sensitivity and resolution will depend not only on inherent protein dynamics, but temperature-dependent phase properties of the bilayer environment. We acquired 1-, 2-, and 3D homo- and heteronuclear experiments of the chemokine receptor CCR3 in a 7:3 phosphatidylcholine:cholesterol lipid environment. 1D direct polarization, cross polarization (CP), and T2’ experiments indicate sample temperatures below − 25 °C facilitate higher CP enhancement and longer-lived transverse relaxation times. T1rho experiments indicate intermediate timescales are minimized below a sample temperature of − 20 °C. 2D DCP NCA experiments indicated optimal CP efficiency and resolution at a sample temperature of − 30 °C, corroborated by linewidth analysis in 3D NCACX at − 30 °C compared to − 5 °C. This optimal temperature is concluded to be directly related the lipid phase transition, measured to be between − 20 and 15 °C based on rINEPT signal of all-trans and trans-gauche lipid acyl conformations. Our results have critical implications in acquisition of SSNMR membrane protein assignment spectra, as we hypothesize that different lipid compositions with different phase transition properties influence protein dynamics and therefore the optimal acquisition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahuja S et al (2009) Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol 16:168–175

    Article  Google Scholar 

  • Alonso B, Massiot D (2003) Multi-scale NMR characterisation of mesostructured materials using 1H–>13C through-bond polarisation transfer, fast MAS, and 1H spin diffusion. J Magn Reson 163:347–352

    Article  ADS  Google Scholar 

  • Baldus M, Petkova A, Herzfeld J, Griffin R (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    Article  ADS  Google Scholar 

  • Banigan J, Gayen A, Traaseth N (2015) Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy. BBA-Biomembranes 1848:334–341

    Article  Google Scholar 

  • Bloch F (1946) Nuclear Induction: 460–474 (Physical Review).

  • Borcik CG, Versteeg DB, Wylie BJ (2019) An inward-rectifier potassium channel coordinates the properties of biologically derived membranes. Biophys J 116:1701–1718

    Article  Google Scholar 

  • Borcik CG et al (2020) The lipid activation mechanism of a transmembrane potassium channel. J Am Chem Soc 142:14102–14116

    Article  Google Scholar 

  • Daviso E, Eddy M, Andreas L, Griffin R, Herzfeld J (2013) Efficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy. J Biomol NMR 55:257–265

    Article  Google Scholar 

  • De Paëpe G et al (2003) Transverse dephasing optimized solid-state NMR spectroscopy. J Am Chem Soc 125:13938–13939

    Article  Google Scholar 

  • Delaglio F et al (1995) NMRPipe- A multidimensinoal spectral processing system based on Unix Pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Do HQ et al (2021) Cross-seeding between the functional amyloidogenic CRES and CRES3 family members and their regulation of Aβ assembly. J Biol Chem 296:100250

    Article  Google Scholar 

  • Elena B, Lesage A, Steuernagel S, Böckmann A, Emsley L (2005) Proton to carbon-13 INEPT in solid-state NMR spectroscopy. J Am Chem Soc 127:17296–17302

    Article  Google Scholar 

  • Fung B, Khitrin A, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  ADS  Google Scholar 

  • Gelenter M et al (2021) Water orientation and dynamics in the closed and open influenza B virus M2 proton channels. Commun Biol. https://doi.org/10.1038/s42003-021-01847-2

    Article  Google Scholar 

  • Ghosh U, Weliky DP (2021) Rapid 2H NMR transverse relaxation of perdeuterated lipid acyl chains of membrane with bound viral fusion peptide supports large-amplitude motions of these chains that can catalyze membrane fusion. Biochemistry 60:2637–2651

    Article  Google Scholar 

  • Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

    Article  Google Scholar 

  • Guan X, Stark RE (2010) A general protocol for temperature calibration of MAS NMR probes at arbitrary spinning speeds. Solid State Nucl Magn Reson 38:74–76

    Article  Google Scholar 

  • Guo W, Hamilton JA (1995) A multinuclear solid-state NMR study of phospholipid-cholesterol interactions: dipalmitoylphosphatidylcholine-cholesterol binary system. Biochemistry 34:14174–14184

    Article  Google Scholar 

  • Helmus J, Jaroniec C (2013) Nmrglue: an open source python package for the analysis of multidimensional NMR data. J Biomol NMR 55:355–367

    Article  Google Scholar 

  • Howarth GS, McDermott AE (2020) High-resolution magic angle spinning NMR of KcsA in liposomes: the highly mobile C-terminus. Biomolecules 12

  • Hu Y et al (2021) NMR-based methods for protein analysis. Anal Chem 93:1866–1879

    Article  Google Scholar 

  • Jekhmane S et al (2019) Shifts in the selectivity filter dynamics cause modal gating in K+ channels. Nat Commun 10:123

    Article  ADS  Google Scholar 

  • Joedicke L et al (2018) The molecular basis of subtype selectivity of human kinin G-protein-coupled receptors. Nat Chem Biol 14:284–290

    Article  Google Scholar 

  • Kimata N et al (2016a) Free backbone carbonyls mediate rhodopsin activation. Nat Struct Mol Biol 23:738–743

    Article  Google Scholar 

  • Kimata N et al (2016b) Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nat Commun 7:12683

    Article  ADS  Google Scholar 

  • Kneller D, Kuntz I (1993) UCSF SPARKY—an NMR display, annotation and assignment tool. J Cell Biochem:254–254

  • Krug U et al (2020) The conformational equilibrium of the neuropeptide Y2 receptor in bilayer membranes. Angew Chem Int Ed Engl 59:23854–23861

    Article  Google Scholar 

  • Krushelnitsky A, Reichert D, Saalwächter K (2013) Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds. Acc Chem Res 46:2028–2036

    Article  Google Scholar 

  • Kubatova N et al (2020) Light dynamics of the retinal-disease-relevant G90D bovine rhodopsin mutant. Angew Chem Int Ed Engl 59:15656–15664

    Article  Google Scholar 

  • Lee W, Tonelli M, Markley J (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327

    Article  Google Scholar 

  • Lu J et al (2013) Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154:1257–1268

    Article  Google Scholar 

  • Maciejewski MW et al (2017) NMRbox: a resource for biomolecular NMR computation. Biophys J 112:1529–1534

    Article  Google Scholar 

  • Mertz B, Struts AV, Feller SE, Brown MF (2012) Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Biochim Biophys Acta 1818:241–251

    Article  Google Scholar 

  • Morcombe C, Zilm K (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  ADS  Google Scholar 

  • Nowacka A, Mohr P, Norrman J, Martin R, Topgaard D (2010) Polarization transfer solid-state NMR for studying surfactant phase behavior. Langmuir 26:16848–16856

    Article  Google Scholar 

  • Nowacka A, Bongartz NA, Ollila OHS, Nylander T, Topgaard D (2013) Signal intensities in H-1-C-13 CP and INEPT MAS NMR of liquid crystals. J Magn Reson 230:165–175

    Article  ADS  Google Scholar 

  • Park S et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779+

    Article  ADS  Google Scholar 

  • Pines A, Waugh J, Gibby M (1972) Proton-enhanced nuclear induction spectroscopy—method for high-resolution NMR of dilute spins in solids. J Chem Phys 56:1776–2000

    Article  ADS  Google Scholar 

  • Quinn C, McDermott A (2012) Quantifying conformational dynamics using solid-state R-1 rho experiments. J Magn Reson 222:1–7

    Article  ADS  Google Scholar 

  • Ray AP, Thakur N, Pour NG, Eddy MT (2023) Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 31:836–847

    Article  Google Scholar 

  • Schaefer J, McKay R, Stejskal E (1979) Double-cross-polarization NMR of solids. J Magn Reson 34:443–447

    ADS  Google Scholar 

  • Schanda P, Ernst M (2016) Studying dynamics by magic-angle spinning solid-state NMR spectroscopy: principles and applications to biomolecules. Prog Nucl Magn Reson Spectrosc 96:1–46

    Article  ADS  Google Scholar 

  • Schwieters C, Kuszewski J, Tjandra N, Clore G (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  ADS  Google Scholar 

  • Schwieters C, Kuszewski J, Clore G (2006) Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc 48:47–62

    Article  Google Scholar 

  • Sperling L, Berthold D, Sasser T, Jeisy-Scott V, Rienstra C (2010) Assignment strategies for large proteins by magic-angle spinning NMR: The 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 399:268–282

    Article  Google Scholar 

  • Struts AV, Salgado GF, Martínez-Mayorga K, Brown MF (2011a) Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat Struct Mol Biol 18:392–394

    Article  Google Scholar 

  • Struts AV, Salgado GF, Brown MF (2011b) Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proc Natl Acad Sci USA 108:8263–8268

    Article  ADS  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Thakur N et al (2023) Anionic phospholipids control mechanisms of GPCR-G protein recognition. Nat Commun 14:794

    Article  ADS  Google Scholar 

  • Thiessen AN, Verbeek W, Gritter K, Ooms KJ (2018) Assessment of the sensitivity of DQF/ZQF 2H NMR of D2O for studying modified nafion membranes at 20 °C and 80 °C. Solid State Nucl Magn Reson 93:1–6

    Article  Google Scholar 

  • Tuttle M et al (2016) Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nat Struct Mol Biol 23:409–415

    Article  Google Scholar 

  • van Aalst EJ, Wylie BJ (2021) Cholesterol is a dose-dependent positive allosteric modulator of CCR3 ligand affinity and G protein coupling. Front Mol Biosci 8:718

    Google Scholar 

  • van Aalst E, Koneri J, Wylie B (2021) In silico identification of cholesterol binding motifs in the chemokine receptor CCR3. Membranes 11:570

    Article  Google Scholar 

  • van Aalst EJ, Borcik CG, Wylie BJ (2022) Spectroscopic signatures of bilayer ordering in native biological membranes. Biochim Biophys Acta Biomembr 1864:183891

    Article  Google Scholar 

  • van Aalst EJ, McDonald CJ, Wylie BJ (2023) Cholesterol biases the conformational landscape of the chemokine receptor CCR3: A MAS SSNMR-filtered molecular dynamics study. J Chem Inf Model 63:3068–3085

    Article  Google Scholar 

  • Vogel A et al (2020) The dynamics of the neuropeptide Y receptor type 1 investigated by solid-state NMR and molecular dynamics simulation. Molecules 25

  • Warschawski D, Devaux P (2000) Polarization transfer in lipid membranes. J Magn Reson 145:367–372

    Article  ADS  Google Scholar 

  • Warschawski D, Devaux P (2005a) Order parameters of unsaturated phospholipids in membranes and the effect of cholesterol: a H-1-C-13 solid-state NMR study at natural abundance. Eur Biophys J Biophys Lett 34:987–996

    Article  Google Scholar 

  • Warschawski D, Devaux P (2005b) H-1-C-13 polarization transfer in membranes: a tool for probing lipid dynamics and the effect of cholesterol. J Magn Reson 177:166–171

    Article  ADS  Google Scholar 

  • Wickramasinghe A et al (2021) Sensitivity-enhanced solid-state NMR detection of structural differences and unique polymorphs in pico- to nanomolar amounts of brain-derived and synthetic 42-residue amyloid-β fibrils. J Am Chem Soc 143:11462–11472

    Article  Google Scholar 

  • Ying JF, Delaglio F, Torchia DA, Bax A (2017) Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J Biomol NMR 68:101–118

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank NMRbox: National Center for Biomolecular NMR Data Processing and Analysis, a Biomedical Technology Research Resource (BTRR) for use of computational resources in this work, which is supported by NIH grant P41GM111135 (NIGMS).

Funding

This work was funded by NIH Grant R35GM124979 (Maximizing Investigators’ Research Award [MIRA] R35) awarded to Benjamin J. Wylie.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, EJvA and BJW; methodology, EJvA and BJW; software, EJvA, JJ, TCH, and BJW; validation, EJvA and BJW; formal analysis, EJvA, JJ, TCH, and BJW; investigation, EJvA and BJW; resources, BJW; data curation, EJvA, JJ, TCH, and BJW; writing—original draft preparation, EJvA; writing—review and editing, EJvA, JJ, TCH and BJW; visualization, EJvA and BJW; supervision, BJW; project administration, BJW; funding acquisition, BJW. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Benjamin J. Wylie.

Ethics declarations

Competing interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3781 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Aalst, E.J., Jang, J., Halligan, T.C. et al. Strategies for acquisition of resonance assignment spectra of highly dynamic membrane proteins: a GPCR case study. J Biomol NMR 77, 191–202 (2023). https://doi.org/10.1007/s10858-023-00421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-023-00421-8

Keywords

Navigation