Skip to main content
Log in

Hyperhomocysteinemia lowers serum testosterone concentration via impairing testosterone production in Leydig cells

  • RESEARCH
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia (HHcy) plays a salient role in male infertility. However, whether HHcy interferes with testosterone production remains inconclusive. Here, we reported a lower serum testosterone level in HHcy mice. Single-cell RNA sequencing revealed that genes related to testosterone biosynthesis, together with nuclear receptor subfamily 5 group A member 1 (Nr5a1), a key transcription factor for steroidogenic genes, were downregulated in the Leydig cells (LCs) of HHcy mice. Mechanistically, Hcy lowered trimethylation of histone H3 on lysine 4 (H3K4me3), which was bound on the promoter region of Nr5a1, resulting in downregulation of Nr5a1. Intriguingly, we identified an unknown cell cluster annotated as Macrophage-like Leydig cells (McLCs), expressing both LCs and macrophages markers. In HHcy mice, McLCs were shifted toward pro-inflammatory phenotype and thus promoted inflammatory response in LC. Betaine supplementation rescued the downregulation of NR5A1 and restored the serum testosterone level in HHcy mice. Overall, our study highlights an etiological role of HHcy in LCs dysfunction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aitken RJ, Flanagan HM, Connaughton H, Whiting S, Hedges A, Baker MA. Involvement of homocysteine, homocysteine thiolactone, and paraoxonase type 1 (PON-1) in the etiology of defective human sperm function. Andrology. 2016;4(2):345–60.

    Article  CAS  PubMed  Google Scholar 

  • Akahoshi N, Kobayashi C, Ishizaki Y, Izumi T, Himi T, Suematsu M, et al. Genetic background conversion ameliorates semi-lethality and permits behavioral analyses in cystathionine β-synthase-deficient mice, an animal model for hyperhomocysteinemia. Hum Mol Genet. 2008;17(13):1994–2005.

    Article  CAS  PubMed  Google Scholar 

  • Aliakbari F, Pouresmaeili F, Eshghifar N, Zolghadr Z, Azizi F. Association of the MTHFR 677C>T and 1298A>C polymorphisms and male infertility risk: a meta-analysis. Reprod Biol Endocrinol RBE. 2020;18(1):93.

    Article  CAS  Google Scholar 

  • Archambeault DR, Yao HH-C. Loss of Smad4 in Sertoli and Leydig Cells Leads to Testicular Dysgenesis and Hemorrhagic Tumor Formation in Mice. Biol Reprod. 2014;90(3):62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arumugam MK, Paal MC, Donohue TM, Ganesan M, Osna NA, Kharbanda KK. Beneficial Effects of Betaine: A Comprehensive Review. Biology. 2021;10(6):456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashtary-Larky D, Bagheri R, Ghanavati M, Asbaghi O, Tinsley GM, Mombaini D, et al. Effects of betaine supplementation on cardiovascular markers: a systematic review and Meta-analysis. Crit Rev Food Sci Nutr. 2022;62(23):6516–33.

    Article  CAS  PubMed  Google Scholar 

  • Basaria S. Male hypogonadism. Lancet Lond Engl. 2014;383(9924):1250–63.

    Article  CAS  Google Scholar 

  • Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020;38(12):1408–14.

    Article  CAS  PubMed  Google Scholar 

  • Bergeron F, Nadeau G, Viger RS. GATA4 knockdown in MA-10 Leydig cells identifies multiple target genes in the steroidogenic pathway. Reprod Camb Engl. 2015;149(3):245–57.

    Article  CAS  Google Scholar 

  • Blake GET, Hall J, Petkovic GE, Watson ED. Analysis of spermatogenesis and fertility in adult mice with a hypomorphic mutation in the Mtrr gene. Reprod Fertil Dev. 2019;31(11):1730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briseño-Bugarín J, Hernández-Ochoa I, Araujo-Padilla X, Mojica-Villegas MA, Montaño-González RI, Gutiérrez-Salmeán G, et al. Phycobiliproteins ameliorate gonadal toxicity in male mice treated with cyclophosphamide. Nutrients. 2021;13(8):2616.

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Z, Shao B, Xu F, Liu Y, Li Y, Zhu Y. Protective effect of selenium on aflatoxin B1-induced testicular toxicity in mice. Biol Trace Elem Res. 2017;180(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  • Chen NC, Yang F, Capecci LM, Gu Z, Schafer AI, Durante W, et al. Regulation of homocysteine metabolism and methylation in human and mouse tissues. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24(8):2804–17.

    CAS  Google Scholar 

  • Chi A, Yang B, Cao X, Wang Z, Liu H, Dai H, et al. ICA II alleviates testicular torsion injury by dampening the oxidative and inflammatory stress. Front Endocrinol. 2022;13:871548.

    Article  Google Scholar 

  • Clare CE, Brassington AH, Kwong WY, Sinclair KD. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. Annu Rev Anim Biosci. 2019;7(1):263–87.

    Article  CAS  PubMed  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinforma Oxf Engl. 2013;29(1):15–21.

    Article  CAS  Google Scholar 

  • Dos Santos DP, Ribeiro DF, Frigoli GF, Erthal RP, da Silva Scarton SR, de Lion Siervo GEM, et al. Voluntary exercise attenuates hyperhomocysteinemia, but does not protect against hyperhomocysteinemia-induced testicular and epididymal disturbances. Reprod Sci Thousand Oaks Calif. 2022;29(1):277–90.

    Article  Google Scholar 

  • Ebisch IMW, Peters WHM, Thomas CMG, Wetzels AMM, Peer PGM, Steegers-Theunissen RPM. Homocysteine, glutathione and related thiols affect fertility parameters in the (sub)fertile couple. Hum Reprod Oxf Engl. 2006;21(7):1725–33.

    Article  CAS  Google Scholar 

  • Edmunds JW, Mahadevan LC, Clayton AL. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 2008;27(2):406–20.

    Article  CAS  PubMed  Google Scholar 

  • Elmore CL, Wu X, Leclerc D, Watson ED, Bottiglieri T, Krupenko NI, et al. Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase. Mol Genet Metab. 2007;91(1):85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagliano-Jucá T, Basaria S. Testosterone replacement therapy and cardiovascular risk. Nat Rev Cardiol. 2019;16(9):555–74.

    Article  PubMed  Google Scholar 

  • Gao F, Li G, Liu C, Gao H, Wang H, Liu W, et al. Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J Cell Biol. 2018;217(6):2103–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green CD, Ma Q, Manske GL, Shami AN, Zheng X, Marini S, et al. A comprehensive roadmap of murine spermatogenesis defined by Single-Cell RNA-Seq. Dev Cell. 2018;46(5):651-667.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harada Y, Tanaka N, Ichikawa M, Kamijo Y, Sugiyama E, Gonzalez FJ, et al. PPARα-dependent cholesterol/testosterone disruption in Leydig cells mediates 2,4-dichlorophenoxyacetic acid-induced testicular toxicity in mice. Arch Toxicol. 2016;90(12):3061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haring R, Völzke H, Steveling A, Krebs A, Felix SB, Schöfl C, et al. Low serum testosterone levels are associated with increased risk of mortality in a population-based cohort of men aged 20–79. Eur Heart J. 2010;31(12):1494–501.

    Article  CAS  PubMed  Google Scholar 

  • Heinrich A, DeFalco T. Essential roles of interstitial cells in testicular development and function. Andrology. 2020;8(4):903–14.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li X, Sun X, Yao J, Gao F, Wang Z, et al. Anatomical transcriptome atlas of the male mouse reproductive system during aging. Front Cell Dev Biol. 2022;9:782824.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med. 2017;49(4):e324–e324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakubowski H. Homocysteine modification in protein structure/function and human disease. Physiol Rev. 2019;99(1):555–604.

    Article  CAS  PubMed  Google Scholar 

  • Johnsen SG. Testicular biopsy score count – a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Horm Res Paediatr. 1970;1(1):2–25.

    Article  CAS  Google Scholar 

  • Johnson AR, Craciunescu CN, Guo Z, Teng Y-W, Thresher RJ, Blusztajn JK, et al. Deletion of murine choline dehydrogenase results in diminished sperm motility. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24(8):2752–61.

    CAS  Google Scholar 

  • Jung M, Wells D, Rusch J, Ahmad S, Marchini J, Myers SR, et al. Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. eLife. 2019;8:e43966.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan P, Tatarkova Z, Sivonova MK, Racay P, Lehotsky J. Homocysteine and mitochondria in cardiovascular and cerebrovascular systems. Int J Mol Sci. 2020;21(20):E7698.

    Article  Google Scholar 

  • Kelly TLJ, Neaga OR, Schwahn BC, Rozen R, Trasler JM. Infertility in 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient male mice is partially alleviated by lifetime dietary betaine supplementation. Biol Reprod. 2005;72(3):667–77.

    Article  CAS  PubMed  Google Scholar 

  • Kirova DG, Judasova K, Vorhauser J, Zerjatke T, Leung JK, Glauche I, et al. A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Dev Cell. 2022;57(14):1712-1727.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloner RA, Carson C, Dobs A, Kopecky S, Mohler ER. Testosterone and cardiovascular disease. J Am Coll Cardiol. 2016;67(5):545–57.

    Article  CAS  PubMed  Google Scholar 

  • Krijt J, Dutá A, Kožich V. Determination of S-Adenosylmethionine and S-Adenosylhomocysteine by LC–MS/MS and evaluation of their stability in mice tissues. J Chromatogr B. 2009;877(22):2061–6.

    Article  CAS  Google Scholar 

  • La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al. RNA velocity of single cells. Nature. 2018;560(7719):494–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Qiu B, Lu H, Lai Y, Liu J, Luo J, et al. Hyperhomocysteinemia accelerates acute kidney injury to chronic kidney disease progression by downregulating heme oxygenase-1 expression. Antioxid Redox Signal. 2019;30(13):1635–50.

    Article  CAS  PubMed  Google Scholar 

  • Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinforma Oxf Engl. 2011;27(12):1739–40.

    Article  CAS  Google Scholar 

  • Long Y, Nie J. Homocysteine in Renal Injury. Kidney Dis Basel Switz. 2016;2(2):80–7.

    Article  Google Scholar 

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma W, Li S, Ma S, Jia L, Zhang F, Zhang Y, et al. Zika virus causes testis damage and leads to male infertility in mice. Cell. 2016;167(6):1511-1524.e10.

    Article  CAS  PubMed  Google Scholar 

  • Malecki C, Hambly BD, Jeremy RW, Robertson EN. The role of inflammation and myeloperoxidase-related oxidative stress in the pathogenesis of genetically triggered thoracic aortic aneurysms. Int J Mol Sci. 2020;21(20):7678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinsohn M-C, Smith OE, Bertolin K, Murphy BD. The orphan nuclear receptors steroidogenic factor-1 and liver receptor homolog-1: structure, regulation, and essential roles in mammalian reproduction. Physiol Rev. 2019;99:31.

    Article  Google Scholar 

  • Miller SC, Bowman BM, Rowland HG. Structure, cytochemistry, endocytic activity, and immunoglobulin (Fc) receptors of rat testicular interstitial-tissue macrophages. Am J Anat. 1983;168(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  • Narula A, Kilen S, Ma E, Kroeger J, Goldberg E, Woodruff TK. Smad4 overexpression causes germ cell ablation and leydig cell hyperplasia in transgenic mice. Am J Pathol. 2002;161(5):1723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olthof M, Verhoef P. Effects of Betaine Intake on Plasma Homocysteine Concentrations and Consequences for Health. Curr Drug Metab. 2005;6(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sararols P, Stévant I, Neirijnck Y, Rebourcet D, Darbey A, Curley MK, et al. Specific transcriptomic signatures and dual regulation of steroidogenesis between fetal and adult mouse leydig cells. Front Cell Dev Biol. 2021;9:695546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwahn BC, Laryea MD, Chen Z, Melnyk S, Pogribny I, Garrow T, et al. Betaine rescue of an animal model with methylenetetrahydrofolate reductase deficiency. Biochem J. 2004;382(3):831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W, Gao C, Cueto R, Liu L, Fu H, Shao Y, et al. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biol. 2020;28:101322.

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Jaiswal D. One-carbon metabolism, spermatogenesis, and male infertility. Reprod Sci Thousand Oaks Calif. 2013;20(6):622–30.

    Article  CAS  Google Scholar 

  • Slow S, Lever M, Chambers ST, George PM. Plasma dependent and independent accumulation of betaine in male and female rat tissues. Physiol Res. 2009;58(3):403–10.

    Article  CAS  PubMed  Google Scholar 

  • Sönmez M, Yüce A, Türk G. The protective effects of melatonin and Vitamin E on antioxidant enzyme activities and epididymal sperm characteristics of homocysteine treated male rats. Reprod Toxicol. 2007;23(2):226–31.

    Article  PubMed  Google Scholar 

  • Sriraman V, Anbalagan M, Rao AJ. Hormonal regulation of Leydig cell proliferation and differentiation in rodent testis: a dynamic interplay between gonadotrophins and testicular factors. Reprod Biomed Online. 2005;11(4):507–18.

    Article  CAS  PubMed  Google Scholar 

  • Suo S, Zhu Q, Saadatpour A, Fei L, Guo G, Yuan G-C. Revealing the critical regulators of cell identity in the mouse cell atlas. Cell Rep. 2018;25(6):1436-1445.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueland PM, Holm PI, Hustad S. Betaine: a key modulator of one-carbon metabolism and homocysteine status. Clin Chem Lab Med. 2005;43(10):1069–75.

    Article  CAS  PubMed  Google Scholar 

  • Vacek TP, Kalani A, Voor MJ, Tyagi SC, Tyagi N. The role of homocysteine in bone remodeling. Clin Chem Lab Med. 2013;51(3):579–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang W, Li S, Han Y, Zhang P, Meng G, et al. Hydrogen sulfide as a potential target in preventing spermatogenic failure and testicular dysfunction. Antioxid Redox Signal. 2018;28(16):1447–62.

    Article  CAS  PubMed  Google Scholar 

  • Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8(4):281-291.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia K, Wang F, Lai X, Dong L, Luo P, Zhang S, et al. AAV-mediated gene therapy produces fertile offspring in the Lhcgr-deficient mouse model of Leydig cell failure. Cell Rep Med. 2022;3(11):100792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Zhao B, Luo J, Li Y, Zhu F, Li G, et al. A U-shaped association between serum betaine and incident risk of first ischemic stroke in hypertensive patients. Clin Nutr. 2020;39(8):2517–24.

    Article  CAS  PubMed  Google Scholar 

  • Xue Q, Xu Y, Yang H, Zhang L, Shang J, Zeng C, et al. Methylation of a novel CpG island of intron 1 is associated with steroidogenic factor 1 expression in endometriotic stromal cells. Reprod Sci Thousand Oaks Calif. 2014;21(3):395–400.

    Article  Google Scholar 

  • Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem. 2000;275(38):29318–23.

    Article  CAS  PubMed  Google Scholar 

  • Yin B, Yu F, Wang C, Li B, Liu M, Ye L. Epigenetic control of mesenchymal stem cell fate decision via histone methyltransferase Ash1l. Stem Cells. 2019;37(1):115–27.

    Article  CAS  PubMed  Google Scholar 

  • Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience. 2020;9(12):giaa151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol. 2012;16(5):284–7.

    Article  CAS  Google Scholar 

  • Zhang Y, Liu T, Hu X, Wang M, Wang J, Zou B, et al. Cell Call: integrating paired ligand–receptor and transcription factor activities for cell–cell communication. Nucleic Acids Res. 2021;49(15):8520–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitzmann M. Testosterone deficiency, insulin resistance and the metabolic syndrome. Nat Rev Endocrinol. 2009;5(12):673–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Xuejiang Guo (State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Jiangning District, Nanjing, Jiangsu, China) for advice on experiments to detect animal subfertility.

Funding

This work was supported by grants from Nature and Science Foundation of China (81730019, 81521003, 82090020), Nature and Science Foundation of Guangdong province (2019B1515120075) and Outstanding Scholar Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory (2018GZR110102004) to Dr. Jing Nie, grant from the Nature and Science Foundation of China (81900609) to Dr. Wenjing Lei.

Author information

Authors and Affiliations

Authors

Contributions

JN, ZS, ZL, WL and KX conceived the project and designed the study. ZS performed in vivo and in vitro experiment and data analysis with the assistance of WL. ZL conducted the scRNA-seq analysis and visualization with the assistance of DW. ZH, MZ, JT and MY provided reagents and technique support. JN, ZS, ZL and AX drafted the manuscript. ZS, ZL, KX, FZ, APX and JN edited and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jing Nie.

Ethics declarations

Declaration of interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Additional file 1: Fig. S1.

Tracking of serum testosterone in control and hyperhomocysteinemia (HHcy) mice. (A) Testosterone levels in serum (n≥5). Data are shown as mean ± SEM. Significance between the groups at the end of feeding according to two-tailed unpaired t test. *p<0.05. Fig. S2. Effect of HHcy on testes and epididymis. (A) Histopathology of testes. Scale bars 50 μm. (B) Abnormal tubule rate in testes (n=9). (C) Histopathology of epididymis. Scale bars 100 μm. (D) Malondialdehyde (MDA) level in the testes (n≥6). (E-G) RT-qPCR analysis of genes, Sod3 (E), Cat (F) and Mpo (G) in testes (n=6). The values were normalized to Actb. Data are shown as mean ± SEM. Significance according to two-tailed unpaired t test. *p<0.05, **p<0.01, ***p<0.001. Fig. S3. Assessment of cholesterol levels and the expression of cholesterol metabolism-related genes. (A) Total cholesterol (TC) levels in serum (n=10). (B) TC levels in testes (n=8). (C) RT-qPCR analysis of genes related to cholesterol metabolism in testes (n=6). The values were normalized to Actb. (D) RT-qPCR analysis of genes related to cholesterol metabolism in primary LCs (n=3). The values were normalized to Actb. Data are shown as mean ± SEM. Significance according to two-tailed unpaired t test. Fig. S4. scRNA-Seq profiling of cellular functions in testis. (A) Dot plots showing the enriched GO terms of each cell type. Fig. S5. Analysis of marker genes in the C02_LC. (A) Violin plots displaying expression level of LCs markers (Hsd3b1, Cyp17a1, Star and Cyp11a1) and spermatids markers (Prm2 andTnp2) in C01_LC, C02_LC and C17_ST. Fig. S6. Regulation of Nr5a1 by H3K4me3 and H3K36me3 in mice testis. (A) Schematic diagram showing the H3K4me3 and H3K36me3 binding sites around the Nr5a1 promoter region obtained from the UCSC genome browser (version mm9). Fig. S7. Hcy-induced alterations in factors regulating H3K4me3. (A) Ratio of SAM and SAH in testes of mice (n=9). Data represent mean ± SEM and analyzed with two-tailed unpaired t-test. (B) The mRNA expression levels of Kmt2a, Ash1l, Kmt2e and Kmt2c in LCs. Data was shown as mean ± standard deviation (SD) and analyzed with Wilcoxon rank sum test. (C) RT-qPCR analysis of Kmt2a, Kmt2e, Kmt2c and Ash1l in MLTC-1 cells treated with 400 μM Hcy for 60 hours (n=3). The values were normalized to Actb. Data are shown as mean ± SEM. Significance according to two-tailed unpaired t test. Fig. S8. Features and differences of LCs, McLCs and macrophages. (A) Violin plots displaying the distribution of detected gene numbers, total UMIs per cell and the percentage of mitochondrial genes. (B) Band-Altman plot (MA plot, log2 (Fold-Changes) versus the average expression) displaying the DEGs between McLCs and macrophages. Red dots represent genes highly expressed in McLCs and blue dots represent highly expressed in macrophages (|log2Fold-Change|>2). LCs markers labelled with red font; macrophages markers labelled with by blue font. (C) Band-Altman plot displaying the DEGs between McLCs and LCs. (D) Boxplot showing the AUCell scores of macrophage-associated GO-BP terms in three cell clusters. The comparison was based on the Wilcoxon rank sum test. ****p < 0.0001. Fig. S9. Intercellular communications from LCs and macrophages to LCs in mice testis. Sankey plot of intercellular communications from LCs to LCs in control and HHcy group. (B) Sankey plot of cellular communications from macrophages to LCs in control and HHcy group. Fig. S10. Distribution of Bhmt, Mthfr and Mtr expression in cell populations. (A) tSNE plots showing Bhmt, Mthfr and Mtr expressed in cell populations. LCs were denoted in circles. Table S1. Characteristics of the phenotype of mice. Table S2. Assessment of fertility of mice. Table S3. Luteinizing hormone (LH) levels in the serum. Table S4. Marker genes for each cell cluster. Table S5. Primer sequences for qPCR. (PDF 62311 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Liu, Z., Lei, W. et al. Hyperhomocysteinemia lowers serum testosterone concentration via impairing testosterone production in Leydig cells. Cell Biol Toxicol 39, 3077–3100 (2023). https://doi.org/10.1007/s10565-023-09819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-023-09819-4

Keywords

Navigation