Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T21:47:22.480Z Has data issue: false hasContentIssue false

High-temperature behaviour of fedorite, Na2.5(Ca4.5Na2.5)[Si16O38]F2⋅2.8H2O, from the Murun Alkaline Complex, Russia

Published online by Cambridge University Press:  11 May 2023

Maria Lacalamita
Affiliation:
Earth and Geoenvironmental Sciences Department, University of Bari Aldo Moro, via E. Orabona 4, I-70125 Bari, Italy
Ernesto Mesto*
Affiliation:
Earth and Geoenvironmental Sciences Department, University of Bari Aldo Moro, via E. Orabona 4, I-70125 Bari, Italy
Ekaterina Kaneva
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1a Favorsky Str., 664033 Irkutsk, Russia Sidorov Mineralogical Museum, Irkutsk National Research Technical University, 83 Lermontov Str., 664074 Irkutsk, Russia
Roman Shendrik
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1a Favorsky Str., 664033 Irkutsk, Russia
Tatiana Radomskaya
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1a Favorsky Str., 664033 Irkutsk, Russia Sidorov Mineralogical Museum, Irkutsk National Research Technical University, 83 Lermontov Str., 664074 Irkutsk, Russia
Emanuela Schingaro
Affiliation:
Earth and Geoenvironmental Sciences Department, University of Bari Aldo Moro, via E. Orabona 4, I-70125 Bari, Italy
*
Corresponding author: Ernesto Mesto; Email: ernesto.mesto@uniba.it

Abstract

The thermal behaviour of fedorite from the Murun massif, Russia, has been investigated by means of electron probe microanalysis (EPMA), differential thermal analysis (DTA), thermogravimetry (TG), in situ high-temperature single-crystal X-ray diffraction (HT-SCXRD), ex situ high-temperature Fourier-transform infrared spectroscopy (HT-FTIR). The empirical chemical formula of the sample of fedorite studied is: (Na1.56K0.72Sr0.12)Σ2.40(Ca4.42Na2.54Mn0.02Fe0.01Mg0.01)Σ7.00(Si15.98Al0.02)Σ16.00(F1.92Cl0.09)Σ2.01(O37.93OH0.07)Σ38.00⋅2.8H2O. The TG curve provides a total mass decrease of ~5.5%, associated with dehydration and defluorination processes from 25 to 1050°C. Fedorite crystallises in space group P$\bar{1}$ and has: a = 9.6458(2), b = 9.6521(2), c = 12.6202(4) Å, α = 102.458(2), β = 96.2250(10), γ = 119.9020(10)° and cell volume, V = 961.69(5) Å3. The HT-SCXRD was carried out in air in the 25–600°C range. Overall, a continuous expansion of the unit-cell volume was observed although the c cell dimension slightly decreases in the explored temperature range. Structure refinements indicated that the mineral undergoes a dehydration process with the loss of most of the interlayer H2O from 25 to 300°C. The HT-FTIR spectra confirmed that fedorite progressively dehydrates until 700°C.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ferdinando Bosi

References

Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, D.J. (2003) Crystals version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487.CrossRefGoogle Scholar
Blackburn, W.H. and Dennen, W.H. (1997) Encyclopedia of Mineral Names. The Canadian Mineralogist Special Publication 1. Mineralogical Association of Canada, Ottawa, Canada, 360 pp.Google Scholar
Bogdanov, A., Kaneva, E. and Shendrik, R. (2021) New insights into the crystal chemistry of elpidite, Na2Zr[Si6O15]⋅3H2O and (Na1+YCax1−X−Y)Σ=2Zr[Si6O15]⋅(3−X)H2O, and ab initio modeling of IR spectra. Materials, 14, 2160.CrossRefGoogle Scholar
Bonaccorsi, E. and Merlino, S. (2005) Modular microporous minerals: Cancrinite–davine group and C-S-H phases. Pp. 241290 in: Micro- and Mesoporous Mineral Phases (Ferraris, G. and Merlino, S., editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Borovikov, A.A., Vladykin, N.V., Tretiakova, I.G. and Dokuchits, E.Yu (2018) Physicochemical conditions of formation of hydrothermal titanium mineralization on the Murunskiy alkaline massif, western Aldan (Russia). Ore Geology Reviews, 95, 10661075.CrossRefGoogle Scholar
Breese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. (2006) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, Oxford, 278 pp.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bruker, (2007) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker, (2009) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Comboni, D., Lotti, P., Gatta, G.D., Lacalamita, M., Mesto, E., Merlini, M. and Hanfland, M. (2019) Armstrongite at non-ambient conditions: An in-situ high-pressure single-crystal X-ray diffraction study. Microporous and Mesoporous Materials, 274, 171175.CrossRefGoogle Scholar
Ferraris, G. (1997) Polysomatism as a tool for correlating properties and structure. Pp. 275295 in: Modular Aspects of Minerals (Merlino, S., editor). European Mineralogical Union, volume 1.CrossRefGoogle Scholar
Ferraris, G. and Gula, A. (2005) Polysomatic aspects of microporous minerals – Heterophyllosilicates, palysepioles and rhodesite-related structures. Pp. 69104 in: Micro- and Mesoporous Mineral Phases (Ferraris, G. and Merlino, S., editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hawthorne, F.C., Uvarova, Y.A. and Sokolova, E. (2019) A structure hierarchy for silicate minerals: sheet silicates. Mineralogical Magazine, 83, 355.CrossRefGoogle Scholar
Ilinca, G. (2022) Charge distribution and bond valence sum analysis of sulfosalts – the ECoN21 Computer Program. Minerals, 12, 924.CrossRefGoogle Scholar
Ivanov, A.V., Vladykin, N.V., Demonterova, E.I., Gorovoy, V.A. and Dokuchits, E.Y. (2018) 40Ar/ 39Ar geochronology of the Malyy (Little) Murun massif, Aldan shield of the Siberian craton: A simple story for an intricate igneous complex. Minerals, 8, 602.CrossRefGoogle Scholar
Joswig, W., Drits, V.A. and Sokolova, G.V. (1988) Refinement of the structure of fedorite. Soviet Physics-Crystallography, 33, 763765.Google Scholar
Kaneva, E. and Shendrik, R. (2022) Tinaksite and tokkoite: x-ray powder diffraction, optical and vibrational properties. Crystals, 12, 377.CrossRefGoogle Scholar
Kaneva, E., Lacalamita, M., Mesto, E., Schingaro, E., Scordari, F. and Vladykin, N. (2014) Structure and modeling of disorder in miserite from the Murun (Russia) and Dara-i-Pioz (Tajikistan) massifs. Physics and Chemistry of Minerals, 41, 4963.CrossRefGoogle Scholar
Kaneva, E.V., Vladykin, N.V., Mesto, E., Lacalamita, M., Scordari, F. and Schingaro, E. (2018) Refinement of the crystal structure of vlasovite from Burpala Massif (Russia). Crystallography Reports, 63, 10921098.CrossRefGoogle Scholar
Kaneva, E.V., Shendrik, R.Yu., Radomskaya, T.A. and Suvorova, L.F. (2020a) Fedorite from Murun alkaline complex (Russia): spectroscopy and crystal chemical features. Minerals, 10, 702.CrossRefGoogle Scholar
Kaneva, E., Shendrik, R., Mesto, E., Bogdanov, A. and Vladykin, N. (2020b) Spectroscopy and crystal chemical properties of NaCa2[Si4O10]F natural agrellite with tubular structure. Chemical Physics Letters, 738, 136868.CrossRefGoogle Scholar
Kaneva, E., Bogdanov, A. and Shendrik, R. (2020c) Structural and vibrational properties of agrellite. Scientific Reports, 10, 15569.CrossRefGoogle ScholarPubMed
Kaneva, E.V., Shendrik, R.Y., Vladykin, N.V., Radomskaya, T.A. (2021) Crystal-chemical features of rare and complex silicates from charoite rocks of the Malyy Murun Volcano-Plutonic Alkaline Complex. Pp. 115129 in: Alkaline Rocks, Kimberlites and Carbonatites: Geochemistry and Genesis. Proceedings of the XV International Seminar “Deep-seated magmatism, its sources and plumes”, 1-7 September 2019, Russia, Saki. Springer Proceedings in Earth and Environmental Sciences.CrossRefGoogle Scholar
Kaneva, E., Radomskaya, T., Shendrik, R. (2022) Fluorcarletonite – a new blue gem material. Journal of Gemmology, 38, 376385.CrossRefGoogle Scholar
Kaneva, E., Bogdanov, A., Radomskaya, T., Belozerova, O. and Shendrik, R. (2023a) Crystal-chemical characterization and spectroscopy of fluorcarletonite and carletonite. Mineralogical Magazine, 87, 356368, https://doi.org/10.1180/mgm.2023.15.CrossRefGoogle Scholar
Kaneva, E., Radomskaya, T., Belozerova, O. and Shendrik, R. (2023b) Crystal chemistry of turkestanite (Dara-i-Pioz massif, Tajikistan). Mineralogical Magazine, 87, 252261 https://doi.org/10.1180/mgm.2023.3.CrossRefGoogle Scholar
Konev, A.A., Vorobjov, E.I. and Bulach, A. (1993) Charoit – der Schmuckstein aus Sibirien und seine seltenen Begleitminerale. Lapis, 18, 1320.Google Scholar
Konev, A.A., Vorob'ev, E.I. and Lazebnik, K.A. (1996) Mineralogy of the Murunsky Alkaline Massif. SIC UIGGM, Publishing House of SB RAS, Novosibirsk, 221 pp. [in Russian].Google Scholar
Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, E.I., Il'inskii, G.A., Sergeev, A.S. and Abakumova, N.B. (1965) Caledonian Complex of Ultrabasic, Alkaline Rocks and Carbonatites of the Kola Peninsula and North Karelia. Nedra, Moscow, Russia, 772 pp.Google Scholar
Lacalamita, M. (2018) Micro-FTIR and EPMA characterisation of charoite from Murun Massif (Russia). Journal of Spectroscopy, 2018, 9293637.CrossRefGoogle Scholar
Lacalamita, M., Mesto, E., Kaneva, E., Scordari, F., Pedrazzi, G., Vladykin, N. and Schingaro, E. (2017) Structure refinement and crystal chemistry of tokkoite and tinaksite from the Murun massif (Russia). Mineralogical Magazine, 81, 251272.CrossRefGoogle Scholar
Lacalamita, M., Cametti, G., Mesto, E. and Schingaro, E. (2019) Armstrongite at non ambient conditions: An in-situ high temperature single crystal X-ray diffraction study. Microporous and Mesoporous Materials, 275, 180190.CrossRefGoogle Scholar
Mesto, E., Kaneva, E., Schingaro, E., Vladykin, N., Lacalamita, M., Scordari, F. (2014) Armstrongite from Khan Bogdo (Mongolia): Crystal structure determination and implications for zeolite-like cation exchange properties. American Mineralogist, 99, 24242432.CrossRefGoogle Scholar
Mitchell, R.H. and Burns, P.C. (2001) The structure of fedorite: A re-appraisal. The Canadian Mineralogist, 39, 769777.CrossRefGoogle Scholar
Pasero, M (2023) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). http://cnmnc.units.it/Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” φ(ρZ) procedure for improved quantitative micro analysis. Pp 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press Inc., San Francisco.Google Scholar
Rastsvetaeva, R.K. and Aksenov, S.M. (2011) Crystal chemistry of silicates with three-layer TOT and HOH modules of layered, chainlike, and mixed types. Crystallography Reports, 56, 910934.CrossRefGoogle Scholar
Sapozhnikov, A.N., Tauson, V.L., Lipko, S.V., Shendrik, R.Yu., Levitskii, V.I., Suvorova, L.F., Chukanov, N.V. and Vigasina, M.F. (2021) On the crystal chemistry of sulfur-rich lazurite, ideally Na7Ca(Al6Si6O24)(SO4)(S3)nH2O. American Mineralogist, 106, 226234.CrossRefGoogle Scholar
Schingaro, E., Mesto, E., Lacalamita, M., Scordari, F., Kaneva, E. and Vladykin, F.N. (2017) Single-crystal X-ray diffraction, EMPA, FTIR and X-ray photoelectron spectroscopy study of narsarsukite from Murun Massif, Russia. Mineralogical Magazine, 81, 339354.CrossRefGoogle Scholar
Schingaro, E., Lacalamita, M., Mesto, E. and Della Ventura, G.C. (2018) Thermal stability and dehydration of armstrongite, a microporous zirconium silicate. Microporous and Mesoporous Materials, 272, 137142.CrossRefGoogle Scholar
Shendrik, R., Kaneva, E., Radomskaya, T., Sharygin, I. and Marfin, A. (2021) Relationships between the structural, vibrational, and optical properties of microporous cancrinite. Crystals, 11, 280.CrossRefGoogle Scholar
Sokolova, G.V., Kashaev, A.A., Drits, V.A. and Ilyukhin, V.V. (1983) The crystal structure of fedorite. Soviet Physics-Crystallography, 28, 170172.Google Scholar
Vladykin, N.V. (2009) Potassium alkaline lamproite-carbonatite complexes: Petrology, genesis, and ore reserves. Russian Geology Geophysics, 50, 11191128.CrossRefGoogle Scholar
Vladykin, N.V., Borokovikov, A.A., Dokuchits, E.Yu. and Thomas, V.G. (2018) Genesis of charoite rocks in the Murun massif, Aldan Shield, Russia. Geochemistry International, 56, 11351147.CrossRefGoogle Scholar
Zema, M., Ventruti, G., Tarantino, S. and Micelli, C. (2022) A new thermal and atmospheric conditioning device for in situ single-crystal diffraction is up and running. Geosciences for a Sustainable Future, Torino, Italy, S1821 [abstracts].Google Scholar
Supplementary material: File

Lacalamita et al. supplementary material

Lacalamita et al. supplementary material

Download Lacalamita et al. supplementary material(File)
File 4.9 MB