Skip to main content
Log in

Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

When designing peptide ligands based on the structure of a protein receptor, it can be very useful to narrow down the possible binding positions and bound conformations of the ligand without the need to choose its amino acid sequence in advance. Here, we construct and benchmark a tool for this purpose based on a recently reported statistical energy model named SCUBA (Sidechain-Unknown Backbone Arrangement) for designing protein backbones without considering specific amino acid sequences. With this tool, backbone fragments of different local conformation types are generated and optimized with SCUBA-driven stochastic simulations and simulated annealing, and then ranked and clustered to obtain representative backbone fragment poses of strong SCUBA interaction energies with the receptor. We computationally benchmarked the tool on 111 known protein-peptide complex structures. When the bound ligands are in the strand conformation, the method is able to generate backbone fragments of both low SCUBA energies and low root mean square deviations from experimental structures of peptide ligands. When the bound ligands are helices or coils, low-energy backbone fragments with binding poses similar to experimental structures have been generated for approximately 50% of benchmark cases. We have examined a number of predicted ligand-receptor complexes by atomistic molecular dynamics simulations, in which the peptide ligands have been found to stay at the predicted binding sites and to maintain their local conformations. These results suggest that promising backbone structures of peptides bound to protein receptors can be designed by identifying outstanding minima on the SCUBA-modeled backbone energy landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

Code availability

The computer program with examples can be downloaded from https://doi.org/10.5281/zenodo.7839258.

References

  1. Kulshreshtha S, Chaudhary V, Goswami GK, Mathur N (2016) J Comput Aided Mol Des 30(5):401

    Article  CAS  PubMed  Google Scholar 

  2. Henninot A, Collins JC, Nuss JM (2018) J Med Chem 61(4):1382

    Article  CAS  PubMed  Google Scholar 

  3. Beltrán J, Steiner PJ, Bedewitz M, Wei S, Peterson FC, Li Z, Hughes BE, Hartley Z, Robertson NR, Medina-Cucurella AV (2022) Nat Biotechnol 40(12):1855

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shui S, Gainza P, Scheller L, Yang C, Kurumida Y, Rosset S, Georgeon S, Di Roberto RB, Castellanos-Rueda R, Reddy ST (2021) Nat Commun 12(1):5754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shivange AV, Marienhagen J, Mundhada H, Schenk A, Schwaneberg U (2009) Curr Opin Chem Biol 13(1):19

    Article  CAS  PubMed  Google Scholar 

  6. Pelay-Gimeno M, Glas A, Koch O, Grossmann TN (2015) Angew Chem Int Ed 54(31):8896

    Article  CAS  Google Scholar 

  7. Lee AC-L, Harris JL, Khanna KK, Hong J-H (2019) Int J Mol Sci 20(10):2383

  8. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A (2021) Nature 596(7873):583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD (2021) Science 373(6557):871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conte LL, Chothia C, Janin J (1999) J Mol Biol 285(5):2177

    Article  PubMed  Google Scholar 

  11. Cao L, Coventry B, Goreshnik I, Huang B, Sheffler W, Park JS, Jude KM, Marković I, Kadam RU, Verschueren KH (2022) Nature 605(7910):551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao L, Goreshnik I, Coventry B, Case JB, Miller L, Kozodoy L, Chen RE, Carter L, Walls AC, Park Y-J (2020) Science 370(6515):426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dou J, Vorobieva AA, Sheffler W, Doyle LA, Park H, Bick MJ, Mao B, Foight GW, Lee MY, Gagnon LA (2018) Nature 561(7724):485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dang LT, Miao Y, Ha A, Yuki K, Park K, Janda CY, Jude KM, Mohan K, Ha N, Vallon M (2019) Nat Struct Mol Biol 26(6):407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) PLoS ONE 6(4):e18934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Nucleic Acids Research 33(suppl_2):W363

  17. Raveh B, London N, Schueler-Furman O (2010) Proteins 78(9):2029

    Article  CAS  PubMed  Google Scholar 

  18. Desta IT, Porter KA, Xia B, Kozakov D, Vajda S (2020) Structure 28(9):1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karplus M, McCammon JA (2002) Nat Struct Biol 9(9):646

    Article  CAS  PubMed  Google Scholar 

  20. Van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glättli A, Hünenberger PH (2006) Angew Chem Int Ed 45(25):4064

    Article  Google Scholar 

  21. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y (2010) Science 330(6002):341

    Article  CAS  PubMed  Google Scholar 

  22. Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J, Chen Q, Liu H (2022) Nature 602(7897):523

    Article  CAS  PubMed  Google Scholar 

  23. Balasco N, Esposito L, De Simone A, Vitagliano L (2022) Biomolecules 12(9):1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Skolnick J, Gao M (2021) Curr Opin Struct Biol 68:1

    Article  CAS  PubMed  Google Scholar 

  25. Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, Shapovalov MV, Renfrew PD, Mulligan VK, Kappel K (2017) J Chem Theory Comput 13(6):3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiong P, Wang M, Zhou X, Zhang T, Zhang J, Chen Q, Liu H (2014) Nat Commun 5(1):5330

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Zhang L, Wang W, Zhu M, Wang C, Li F, Zhang J, Li H, Chen Q, Liu H (2022) Na Comput Sci 2(7):451

    Article  CAS  Google Scholar 

  28. Dauparas J, Anishchenko I, Bennett N, Bai H, Ragotte RJ, Milles LF, Wicky BI, Courbet A, de Haas RJ, Bethel N (2022) Science 378(6615):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiong P, Hu X, Huang B, Zhang J, Chen Q, Liu H (2020) Bioinformatics 36(1):136

    Article  CAS  PubMed  Google Scholar 

  30. Martins PM, Santos LH, Mariano D, Queiroz FC, Bastos LL, Gomes IdS, Fischer PH, Rocha RE, Silveira SA, de Lima LH (2021) BMC Bioinformatics 22(1):1

  31. Joosten RP, Te Beek TA, Krieger E, Hekkelman ML, Hooft RW, Schneider R, Sander C, Vriend G (2010) Nucleic Acids Res 39(suppl_1):D411

  32. Kabsch W, Sander C (1983) Biopolymers 22(12):2577

    Article  CAS  PubMed  Google Scholar 

  33. Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Berryman JT, Brozell SR, Cerutti DS, Cheatham TE III, Cisneros GA, Cruzeiro VWD, Darden TA, Forouzesh N, Giambaşu G, Giese T, Gilson MK, Gohlke H, Goetz AW, Harris J, Izadi S, Izmailov SA, Kasavajhala K, Kaymak MC, King E, Kovalenko A, Kurtzman T, Lee TS, Li P, Lin C, Liu J, Luchko T, Luo R, Machado M, Man V, Manathunga M, Merz KM, Miao Y, Mikhailovskii O, Monard G, Nguyen H, O’Hearn KA, Onufriev A, Pan F, Pantano S, Qi R, Rahnamoun A, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shajan A, Shen J, Simmerling CL, Skrynnikov NR, Smith J, Swails J, Walker RC, Wang J, Wang J, Wei H, Wu X, Wu Y, Xiong Y, Xue Y, York DM, Zhao S, Zhu Q, Kollman PA (2023) Amber 2023. University of California, San Francisco

    Google Scholar 

  34. Tian C, Kasavajhala K, Belfon KAA, Raguette L, Huang H, Migues AN, Bickel J, Wang Y, Pincay J, Wu Q, Simmerling C (2020) J Chem Theory Comput 16(1):528–552

    Article  PubMed  Google Scholar 

  35. Izadi S, Anandakrishnan R, Onufriev AV (2014) J Phys Chem Lett 5(21):3863–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Uberuaga BP, Anghel M, Voter AF (2004) J Chem Phys 120(14):6363–6374

    Article  CAS  PubMed  Google Scholar 

  37. Sindhikara DJ, Kim S, Voter AF, Roitberg AE (2009) J Chem Theory Comput 5(6):1624–1631

    Article  CAS  PubMed  Google Scholar 

  38. Bussi G, Zykova-Timan T, Parrinello M (2009) J Chem Phys 130(7):074101

    Article  PubMed  Google Scholar 

  39. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  40. Miyamoto S, Kollman PA (1992) J Comput Chem 13(8):952–962

    Article  CAS  Google Scholar 

  41. Walker RC, Crowley MF, Case DA (2008) J Comput Chem 29(7):1019–1031

    Article  CAS  PubMed  Google Scholar 

  42. Nam K, Gao J, York DM (2005) J Chem Theory Comput 1(1):2–13

    Article  CAS  PubMed  Google Scholar 

  43. Roe DR, Cheatham TE 3rd (2013) J Chem Theory Comput 9(7):3084–3095

    Article  CAS  PubMed  Google Scholar 

  44. Atkinson RA, Joseph C, Kelly G, Muskett FW, Frenkiel TA, Nietlispach D, Pastore A (2001) Nat Struct Biol 8(10):853

    Article  CAS  PubMed  Google Scholar 

  45. Remaut H, Rose RJ, Hannan TJ, Hultgren SJ, Radford SE, Ashcroft AE, Waksman G (2006) Mol Cell 22(6):831

    Article  CAS  PubMed  Google Scholar 

  46. Becker A, Schlichting I, Kabsch W, Groche D, Schultz S, Wagner A (1998) Nat Struct Biol 5(12):1053

    Article  CAS  PubMed  Google Scholar 

  47. Prag G, Misra S, Jones EA, Ghirlando R, Davies BA, Horazdovsky BF, Hurley JH (2003) Cell 113(5):609

    Article  CAS  PubMed  Google Scholar 

  48. Piserchio A, Fellows A, Madden DR, Mierke DF (2005) Biochemistry 44(49):16158

    Article  CAS  PubMed  Google Scholar 

  49. Huang X, Poy F, Zhang R, Joachimiak A, Sudol M, Eck MJ (2000) Nat Struct Biol 7(8):634

    Article  CAS  PubMed  Google Scholar 

  50. Timmons PB, Hewage CM (2021) Briefings Bioinformatics 22(6):bbab308

  51. Johansson-Åkhe I, Mirabello C, Wallner B (2019) Sci Rep 9(1):4267

    Article  PubMed  PubMed Central  Google Scholar 

  52. de Vries SJ, Rey J, Schindler CE, Zacharias M, Tuffery P (2017) Nucleic Acids Res 45(W1):W361

    Article  PubMed  PubMed Central  Google Scholar 

  53. Trellet M, Melquiond AS, Bonvin AM (2013) PLoS ONE 8(3):e58769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Sanner MF (2019) Bioinformatics 35(24):5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant number 22177107 to H.L.).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

L Zhang designed and completed the computational study under the supervision of HY Liu. L Zhang and HY Liu wrote the paper.

Corresponding author

Correspondence to Haiyan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, H. Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function. J Comput Aided Mol Des 37, 463–478 (2023). https://doi.org/10.1007/s10822-023-00518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00518-0

Keywords

Navigation