Skip to main content
Log in

Computer Algebra Tools for Geometrization of Maxwell’s Equations

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Calculations of optical devices in the geometrized Maxwell’s theory use well-known formalisms of general theory of relativity and differential geometry. In particular, for such calculations it is required to know the analytical form of the geodesic equations, which leads to the need to calculate a large number of monotonous mathematical expressions. One of the purposes of computer algebra is to facilitate the researcher’s work by automating cumbersome symbolic computations. Thus, the use of computer algebra systems seems to be quite an obvious way. Several free implementations of symbolic computations for the apparatus of general relativity are considered. A practical example of symbolic computations for the geometrized Maxwell’s theory is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here \(n: = n(x,y,z)\)

REFERENCES

  1. Tamm, I.E., Electrodynamics of isotropic medium in special theory of relativity, Zh. Russk. Fiz.-Kim. Ob-va, Ser. Fiz., 1924, vol. 56, no. 2–3, pp. 248–262.

    Google Scholar 

  2. Tamm I.E., Crystallooptics of relativity theory in connection with the geometry of quadratic forms, Zh. Russk. Fiz.-Kim. Ob-va, Ser. Fiz., 1925, vol. 57, no. 3–4, pp. 209–240.

    Google Scholar 

  3. Mandelstam, L.I. and Tamm, I.Y. Elektrodynamik der anisotropen medien in der speziellen relativitätstheorie, Math. Ann., 1925, vol 95, no. 1, pp. 154–160.

    Article  MATH  Google Scholar 

  4. Gordon, W., Zur Lichtfortpflanzung nach der Relativitätstheorie, Ann. Phys., 1923, vol. 72, pp. 421–456.

    Article  MATH  Google Scholar 

  5. Plebanski, J., Electromagnetic waves in gravitational fields, Phys. Rev., 1960, vol. 118, no. 5, pp. 1396–1408.

    Article  MathSciNet  MATH  Google Scholar 

  6. Felice, F., On the gravitational field acting as an optical medium, Gen. Relativity Gravitation, 1971, vol. 2, no. 4, pp. 347–357.

    Article  Google Scholar 

  7. Smolyaninov, I.I., Metamaterial ‘Multiverse’, J. Optics, 2011, vol. 13, no. 2, pp. 024004.

  8. Pendry, J.B., Schurig, D., and Smith, D.R., Controlling electromagnetic fields, Science, 2006, vol. 312, no. 5781, pp. 1780–1782.

    Article  MathSciNet  MATH  Google Scholar 

  9. Schurig, D., Pendry, J.B., n Smith, D.R., Calculation of material properties and ray tracing in transformation media, Optics Express., 2006, vol. 14, no. 21, pp. 9794–9804.

    Article  Google Scholar 

  10. Leonhardt, U., Optical conformal mapping, Science, 2006, vol. 312, no. June, pp. 1777–1780.

    Article  MathSciNet  MATH  Google Scholar 

  11. Leonhardt and U., Philbin, T.G., Transformation optics and the geometry of light, Progr. Optics, 2009, vol. 53, pp. 69–152.

    Article  Google Scholar 

  12. Foster, R., Grant, P., Hao, Y., et al., Spatial transformations: From fundamentals to applications, Phil. Trans. Roy. Soc. A: Math., Phys. Eng. Sci., 2015, vol. 373, no. 2049, p. 20140365.

  13. Kulyabov, D.S., Korolkova, A.V., and Sevastianov, L.A., A naive geometrization of Maxwell’s equations, 15th small triangle meeting of Theoretical Physics, Star Lesn, 2013, pp. 104–111.

  14. Kulyabov, D.S., Korol’kova, A.V., and Sevast’yanov, L.A., A simple geometrization of Maxwell’s equations, Vestn. RUDN, Ser. Mat. Inform. Fiz., 2014, no. 2, pp. 115–125.

  15. Kulyabov, D.S., Korolkova, A.V., Sevastianov, L.A., et al. Algorithm for lens calculations in the geometrized Maxwell theory, Saratov Fall Meeting 2017, Proc. of SPIE, 2018, vol. 10717.

  16. Korol’kova, A.V., Kulyabov, D.S., and Sevast’yanov, L.A., Tensor Computations in Computer Algebra Systems, Program. Comput. Software, 2013, no. 3, pp. 135–142.

  17. Kulyabov, D.S., Korol’kova, A.V., and Sevast’yanov, L.A., New features in the second version of the Cadabra computer algebra system, Program. Comput. Software, 2019, no. 2, pp. 58–64.

  18. Sandon, D., Symbolic Computation with Python and SymPy, Independently published, 2021.

  19. Divakov, D.V. and Tytyunnik, A.A., Symbolic investigation of the spectral characteristics of guided modes in smoothly irregular waveguides, Program. Comput. Software, 2022, no. 2, pp. 80–89.

  20. Sympy, 2022. http://www.sympy.org/ru/index.html.

  21. Project Jupyter, 2022. https://jupyter.org/.

  22. Einsteinpy—Making Einstein possible in Python, 2022. https://einsteinpy-einsteinpy.readthedocs.io/en/latest/index.html.

  23. Gravipy—Tensor calculus package for general relativity based on sympy, 2022. https://github.com/wojciechczaja/GraviPy.

  24. Bruns, H., Das Eikonal, Leipzig: S. Hirzel, 1895, vol. 35.

    MATH  Google Scholar 

  25. Borovskikh, A.V., The two-dimensional eikonal equation, Sib. Math. J., 2006, vol. 47, pp. 813–834.

    Article  MathSciNet  MATH  Google Scholar 

  26. Moskalensky, E.D., Finding exact solutions to the two-dimensional eikonal equation, Num. Anal. Appl., 2009, vol. 2, pp. 201–209.

    Google Scholar 

  27. Kabanikhin, S.I. and Krivorotko, O.I., Numerical solution of eikonal equation, Sib. Elektron. Mat. Izv., 2013, vol. 10, pp. 28–34.

    Google Scholar 

  28. Kulyabov, D.S., Korolkova, A.V., Velieva, T.R., and Gevorkyan M.N., Numerical analysis of eikonal equation, Saratov Fall Meeting 2018. Proc. of SPIE, Vol. 11066, Saratov: SPIE, 2019.

Download references

Funding

This work was supported by the program of strategic academic leadership of the Peoples’ Friendship University of Russia (RUDN University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Korol’kova, M. N. Gevorkyan, D. S. Kulyabov or L. A. Sevast’yanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korol’kova, A.V., Gevorkyan, M.N., Kulyabov, D.S. et al. Computer Algebra Tools for Geometrization of Maxwell’s Equations. Program Comput Soft 49, 366–371 (2023). https://doi.org/10.1134/S0361768823020111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768823020111

Navigation