Skip to main content
Log in

Comparative Analysis of the Complete Mitochondrial Genome Sequence of an Alpine Plant Triosteum pinnatifidum

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract—In this study, the complete mitochondrial genome (mt genome) of Triosteum pinnatifidum was investigated for the first time. The mt genome was consisted of 803 609 bp, comprised of 62 genes including 19 tRNA genes, 3 rRNA genes and 40 protein-coding genes. We detected protein-coding genes and codon usage, RNA editing sites and repeat sequences. The protein-coding genes substitution rates, DNA segments migration, comparison of six species genomic features were generated. Phylogenetic analysis of 32 species was also taken. A total of 463 RNA editing sites were found in 40 protein-coding genes. Being slightly positive, the GC-skew and AT-skew are 0.0060 and 0.0004, respectively. Most of PCGs have Ka/Ks ratio less than 1, indicating the existence of purifying or negative selection in these genes. This is the first report mt genome in the family Caprifoliaceae and could provide a useful foundation for evolutionary analysis, molecular biology and taxonomy in genus Triosteum and other higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Altschul, S.F., Gish, W., Miller, W., Lipman, D.J., et al., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  2. Au, K.F., Underwood, J.G., Lee, L., and Wong, W.H., Improving PacBio long read accuracy by short read alignment, PLoS One, 2012, vol. 7, pp. e46679. https://doi.org/10.1371/journal.pone.0046679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baha, V.S., Behloul, N., Liu, Z.Z., Meng, J.H., et al., Comprehensive analysis of genetic and evolutionary features of the hepatitis E virus, BMC Genomics, 2019, vol. 20, p. 790. https://doi.org/10.1186/s12864-019-6100-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Basse, C.W., Mitochondrial inheritance in fungi, Curr. Opin. Microbiol., 2010, vol. 13, pp. 712–719. https://doi.org/10.1016/j.mib.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  5. Bell, C.D. and Donoghue, M.J., Dating the Dipsacales: comparing models, genes, and evolutionary implications, Am. J. Bot., 2005, vol. 92, pp. 284–296. https://doi.org/10.3732/ajb.92.2.284

    Article  CAS  PubMed  Google Scholar 

  6. Benson, G., Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res., 1999, vol. 27, pp. 573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bi, C.W., Paterson, A.H., Wang, X.L., Ye, N., et al., Analysis of the complete mitochondrial genome sequence of the diploid cotton Gossypium raimondii by comparative genomics approaches, BioMed Res. Int., 2016, vol. 18, pp. 2314–6133. https://doi.org/10.1155/2016/5040598

    Article  CAS  Google Scholar 

  8. Caccone A., Gentile G., Burns C.E., Powell J.R., et al. Extreme difference in rate of mitochondrial and nuclear DNA evolution in a large ectotherm, Galápagos tortoises, Mol. Phylogenet. Evol., 2004, vol. 31, pp. 794–798. https://doi.org/10.1016/j.ympev.2004.02.004

    Article  CAS  PubMed  Google Scholar 

  9. Chai, X., Su, Y.F., Yan, S.L., and Huang, X., Chemical constituents of the roots of Triosteum pinnatifidum, Chem. Nat. Comp., 2014, vol. 50, pp. 1149–1152. https://doi.org/10.1007/s10600-014-1188-1

    Article  CAS  Google Scholar 

  10. Chai, X., Su, Y.F., Zheng, Y.H., Yan, S.L., Zhang, X., and Gao, X.M., Iridoids from the roots of Triosteum pinnatifidum, Biochem. Syst. Ecol., 2010, vol. 38, pp. 210–212. https://doi.org/10.1016/j.bse.2009.12.037

    Article  CAS  Google Scholar 

  11. Chang, S.X., Wang, Y.K., Lu, J.J., Zhao, T.J., et al., The Mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels, PLoS One, 2013, vol. 8, p. e56502. https://doi.org/10.1371/journal.pone.0056502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, S., Zhou, Y.Q., Chen, Y., and Gu, J., fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, 2018, vol. 34, pp. i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng, Y., He, X.X., Priyadarshani, S.V.G.N., Wang, Y., et al., Assembly and comparative analysis of the complete mitochondrial genome of Suaeda glauca, BMC Genomics, 2021, vol. 22, pp. 167. https://doi.org/10.1186/s12864-021-07490-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui, H.N., Ding, Z., Zhu, Q.L., Gao, P., et al., Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer, Sci. Rep., 2021, vol. 11, p. 1595. https://doi.org/10.1038/s41598-020-80149-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Darriba, D., Taboada, G.L., Doallo, R., and Posada, D., jModel Test 2: more models, new heuristics and parallel computing, Nat. Methods, 2012, vol. 9, p. 772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gould, K.R. and Donoghue, M.J., Phylogeny and biogeography of Triosteum (Caprifoliaceae), Harv. Pap. Bot., 2000, vol. 5, pp. 157–166. https://doi.org/10.2307/41761600

    Article  Google Scholar 

  17. Greiner, S., Lehwark, P., and Bock, R., Organellar Genome DRAW (OGDRAW) version1.3.1: expanded toolkit for the graphical visualization of organellar genomes, Nucleic Acids Res., 2019, vol. 47, pp. W59–W64. https://doi.org/10.1101/545509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hausner, G., 6-fungal mitochondrial genomes, plasmids and introns, Appl. Mycol. Biotechnol., 2003, vol. 3, pp. 101–131. https://doi.org/10.1016/S1874-5334(03)80009-6

    Article  CAS  Google Scholar 

  19. Huang, Z., Jin, S.H., Guo, H.D., Chen, Q.B., et al., Genome-wide identification and characterization of TIFY family genes in Moso Bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses, PeerJ, 2016, vol. 4, p. e2620. https://doi.org/10.7717/peerj.2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kan, S.L., Shen, T.T., Gong, P.P., Wang, X.Q., et al., The complete mitochondrial genome of Taxus cuspidate (Taxaceae) eight protein coding genes have transferred to the nuclear genome, BMC Evol. Biol., 2020, vol. 20, p. 10. https://doi.org/10.1186/s12862-020-1582-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knoop, V., The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective, Curr. Genet., 2004, vol. 46, pp. 123–139. https://doi.org/10.1007/s00294-004-0522-8

    Article  CAS  PubMed  Google Scholar 

  22. Koren, S., Walenz, B.P., Berlin, K., Phillippy, A.M., et al., Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res., 2017, vol. 27, pp. 722–736. https://doi.org/10.1101/gr.215087.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lenz, H., Rüdinger, M., Volkmar, U., Knoop, V., et al. Introducing the plant RNA editing prediction and analysis computer tool PREPACT and an update on RNA editing site nomenclature, Curr. Genet., 2010, vol. 56, pp. 189–201. https://doi.org/10.1007/s00294-009-0283-5

    Article  CAS  PubMed  Google Scholar 

  24. Liu, H.R., Gao, Q.B., Zhang, F.Q., Chen, S.L., et al., Gnentic diversity and phylogeographic structure of Triosteum pinnatifidumbased chloroplast DNA sequence rbcL-accD, Bull. Bot. Res., 2018a, vol. 38, pp. 278–283. https://doi.org/10.7525/j.issn.1673-5102.2018.02.016

    Article  Google Scholar 

  25. Liu, H.R., Gao, Q.B., Zhang, F.Q., Khan, G., and Chen, S.L., Westwards and northwards dispersal of Triosteum himalayanum (Caprifoliaceae) from the Hengduan Mountains region based on chloroplast DNA phylogeography, PeerJ, 2018b, vol. 6, p. e4748. https://doi.org/10.7717/peerj.4748

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, H.R., Xia, M.Z., Xiao, Q.M., Zhang, D.J., et al., Characterization of the complete chloroplast genome of Linnaea borealis, a rare, clonal self-incompatible plant, Mitochondrial DNA, Part B, 2020, vol. B5, pp. 200–201. https://doi.org/10.1080/23802359.2019.1698995

    Article  Google Scholar 

  27. Liu, H.R., Khan, G., Gao, Q., Zhang, F., Liu, W., Wang, Y., Fang, J., Chen, S., and Afridi, S.G., Dispersal into the Qinghai-Tibet plateau: evidence from the genetic structure and demography of the alpine plant Triosteum pinnatifidum, PeerJ, 2022, vol. 10, p. e12754. https://doi.org/10.7717/peerj.12754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lowe, T.M. and Chan, P.P., tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes, Nucleic Acids Res., 2016, vol. 44, pp. W54–W5. https://doi.org/10.1093/nar/gkw413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lv, W.Q., Jiang, H.F., Bo, J., He, S.P., et al., Comparative mitochondrial genome analysis of Neodontobutis hainanensis and Perccottus glenii reveals conserved genome organization and phylogeny, Genomics, 2020, vol. 112, pp. 3862–3870. https://doi.org/10.1016/j.ygeno.2020.06.039

    Article  CAS  PubMed  Google Scholar 

  30. O’Conner, S. and Li, L., Mitochondrial fostering: The mitochondrial genome may play a role in plant orphan gene evolution, Front. Plant Sci., 2020, vol. 11, p. 600117. https://doi.org/10.3389/fpls.2020.600117

    Article  PubMed  PubMed Central  Google Scholar 

  31. Perna, N.T. and Kocher, T.D., Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes, J. Mol. Evol., 1995, vol. 41, pp. 353–358. https://doi.org/10.1007/BF00186547

    Article  CAS  PubMed  Google Scholar 

  32. Plotkin, J.B. and Kudla, G., Synonymous but not the same: the causes and consequences of codon bias, Nat. Rev. Genet., 2011, vol. 12, pp. 32–42. https://doi.org/10.1038/nrg2899

    Article  CAS  PubMed  Google Scholar 

  33. Rhoads, A. and Au, K.F., PacBio sequencing and its applications, Genomics, Proteomics Bioinf., 2015, vol. 13, pp. 278–289. https://doi.org/10.1016/j.gpb.2015.08.002

    Article  Google Scholar 

  34. Rödelsperger, C. and Sommer, R.J., Computational archaeology of the Pristionchus pacificus genome reveals evidence of horizontal gene transfers from insects, BMC Evol. Biol., 2011, vol. 11, p. 239. https://doi.org/10.1186/1471-2148-11-239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rombel, I.T., Sykes, K.F., Rayner, S., and Johnston, S.A., ORF-FINDER: a vector for high-throughput gene identification, Gene, 2002, vol. 282, pp. 33–41. https://doi.org/10.1016/S0378-1119(01)00819-8

    Article  CAS  PubMed  Google Scholar 

  36. Rozewicki, J., Li, S., Amada, A.M., Katoh, K., et al., MAFFT-DASH: integrated protein sequence and structural alignment, Nucleic Acids Res., 2019, vol. 47, pp. W5–W10. https://doi.org/10.1093/nar/gkz342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salmela, L. and Rivals, E., LoRDEC: accurate and efficient long read error correction, Bioinformatics, 2014, vol. 30, pp. 3606–3614. https://doi.org/10.1093/bioinformatics/btu538

    Article  CAS  Google Scholar 

  38. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, pp. 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taanman, J.W., The mitochondrial genome: structure, transcription, translation and replication, Biochim. Biophys. Acta, 1999, vol. 1410, pp. 103–123. https://doi.org/10.1016/s0005-2728(98)00161-3

    Article  CAS  PubMed  Google Scholar 

  40. Tang, D.F., Wei, F., Kashif, M.H., Zhou, R.Y., et al., Identification and analysis of RNA editing sites in chloroplast transcripts of kenaf (Hibiscus cannabinus L.), 3 Biotech., 2019, vol. 9, p. 361. https://doi.org/10.1007/s13205-019-1893-3

  41. Tang, Y., Zheng, X., Liu, H., and Sunxie, F., Population genetics and comparative mitogenomic analyses reveal cryptic diversity of Amphioctopus neglectus (Cephalopoda: Octopodidae), Genomics, 2020, vol. 112, pp. 3893–3902. https://doi.org/10.1016/j.ygeno.2020.06.036

    Article  CAS  PubMed  Google Scholar 

  42. Wang, D.P., Zhang, Y.B., Zhang, Z., Yu, J., et al., KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies, Genomics, Proteomics Bioinf., 2010, vol. 8, pp. 77–80. https://doi.org/10.1016/S1672-0229(10)60008-3

    Article  CAS  Google Scholar 

  43. Wang, S.B., Song, Q.W., Li, S.S., Hu, Z.G., et al., Assembly of a complete mitogenome of Chrysanthemum nankingense using oxford nanopore long reads and the diversity and evolution of Asteraceae mitogenomes, Genes, 2018, vol. 9, p. 547. https://doi.org/10.3390/genes9110547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wong, E.H., Smith, D.K., Rabadan, R., Peiris, M., and Poon, L.L., Codon usage bias and the evolution of influenza a viruses. Codon Usage Biases of Influenza Virus, BMC Evol. Biol., 2010, vol. 10, p. 253. https://doi.org/10.1186/1471-2148-10-253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, X.D., Jia, Y.Y., Cao, S.S., Zhang, J.Y., et al., Six complete mitochondrial genomes of mayflies from three genera of Ephemerellidae (Insecta: Ephemeroptera) with inversion and translocation of trnI rearrangement and their phylogenetic relationships, PeerJ, 2020, vol. 8, p. e9740. https://doi.org/10.7717/peerj.9740

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang, Q.E., Landrein, S., Osborne, J., and Borosova, R., Caprifoliaceae, in Flora of China, Wu Z.Y. and Raven, P.H., Eds., Beijing: Sci. Press, 2011, vol. 19, pp. 616–617.

    Google Scholar 

  47. Ye, N., Wang, X.L., Li, J., Ye, Q.L., et al., Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis, PeerJ, 2017, vol. 5, p. e3148. https://doi.org/10.7717/peerj.3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ye, J.Y., Cheng, J., Ren, Y.H., Liao, W.L., and Li, Q., The first Mitochondrial genome for Geastrales (Sphaerobolus stellatus) reveals intron dynamics and large-scale gene rearrangements of Basidiomycota Geastrales, Front. Microbiol., 2020, vol. 11, p. 1970. https://doi.org/10.3389/fmicb.2020.01970

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yildiz, G. and Ozkilinc, H., First characterization of the complete mitochondrial genome of fungal plant-pathogen Monilinia laxa which represents the mobile intron rich structure, Sci. Rep., 2020, vol. 10, p. 13644. https://doi.org/10.1038/s41598-020-70611-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, L., Zhang, L., Yin, M., Wang, J.T., and Zhang, G., Investigation on plant resources for Qinling Qiyao, Northwest Pharm. J., 2014, vol. 29, pp. 335–343. https://doi.org/10.3969/j.issn.1004-2407.2014.04.002

    Article  Google Scholar 

  51. Zhao, Z.Q., Su, Y.F., Huang, X., Ma, X.J., et al., Chemical constituents from aerial parts of Triosteum pinnatifidum, Chin. Tradit. Herb. Drugs, 2016, vol. 47, pp. 2089–2094. https://doi.org/10.7501/j.issn.0253-2670.2016.12.0z12

    Article  Google Scholar 

  52. Zhou, X.W., Systematic Evolution of Caprifoliaceous Plants in 12 Genera, J. Shenyang Univ., 2012, vol. 24, p. 39–41.

    Google Scholar 

Download references

Funding

This research was funded by the CAS Light of West China Program (2022); Joint Grant from Chinese Academy of Science-People’s Government of Qinghai Province on Sanjiangyuan National Park, grant no. LHZX-2021-04.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.R.L. and W.H.L.; methodology, Q.B.G. and Q.M.X; software, Q.M.X.; validation, S.L.C.; formal analysis, Q.M.X; investigation, H.R.L. and X.M.L.; resources, W.H.L.; data curation, X.M.L; writing—original draft preparation, Q.M.X; writing—review and editing, Q.M.X, Z.W.Y and Q.Z.; visualization, A.Q.W.; supervision, H.R.L. and Q.B.G.; project administration, H.R.L.; funding acquisition, H.R.L. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Qingbo Gao or Shilong Chen.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

DATA AVAILABILITY STATEMENT

The mitochondrial genome sequences of T. pinnatifidum were submitted to GenBank (MW526076).

Additional information

SUPPLEMENTARY MATERIALS

The following are available online at www.mdpi.com/xxx/s1, Table S1: Conversion of the RNA editing amino acids, Table S2: The Ka/Ks value of 19 protein-coding genes of Triosteum pinnatifidum vs. Actinidia arguta, Table S3: The Ka/Ks value of 24 protein-coding genes of Triosteum pinnatifidum versus Lactuca sativa, Table S4: The Ka/Ks value of 23 protein-coding genes of Triosteum pinnatifidum versus Hordeum vulgare, Table S5: The Ka/Ks value of 26 protein-coding genes of Triosteum pinnatifidum vs. Phoenix dactylifera, Table S6: The Ka/Ks value of 27 protein-coding genes of Triosteum pinnatifidum vs. Populus davidiana, Table S7: The Ka/Ks value of 27 protein-coding genes of Triosteum pinnatifidum vs. Senna occidentalis, Table S8: Information and GenBank accession number of the species used in genes comparison, Table S9: Gene features comparison of mt genome of six species.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, W., Xiao, Q. et al. Comparative Analysis of the Complete Mitochondrial Genome Sequence of an Alpine Plant Triosteum pinnatifidum. Cytol. Genet. 57, 335–346 (2023). https://doi.org/10.3103/S0095452723040084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723040084

Navigation