Skip to main content
Log in

Genetic Basis of Pest Resistance in Wheat-Rye and Triticale Stocks

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

This review describes eight genes and 21 loci for resistance to pests localized in rye chromosomes of wheat-rye and triticale genetic stocks. Detailed information is given for the rye chromosome donor, the type of chromatin inserted, the molecular marker, if present, and resulting wheat and/or triticale lines for deployment the resistance in breeding. The main insect resistance factors are determined in chromosome 1R, followed by 6R, in the form of wheat-rye chromosome translocations or substitutions. Most of the genes provide resistance to Russian wheat aphid and Hessian fly. The recorded genetic stocks can efficiently serve as important bridges for wheat and triticale improvement. The data thus provided will help researchers to competently use resistances of rye chromatin through classical and marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aguirre-Rojas, L.M., Khalaf, L.K., Garcés-Carrera, S., Sinha, D.K., Chuang, W.-P., and Smith, C.M., Resistance to wheat curl mite in arthropod-resistant rye-wheat translocation lines, Agronomy, 2017, vol. 4, p. 74. https://doi.org/10.3390/agronomy7040074

    Article  CAS  Google Scholar 

  2. Anderson, G.R., Papa, D., Peng, J., Tahir, M., and Lapitan, N.L.V., Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat, Theor. Appl. Genet., 2003, vol. 107, pp. 1297–1303. https://doi.org/10.1007/s00122-003-1358-1

    Article  CAS  PubMed  Google Scholar 

  3. Andersson, S.C., Johansson, E., Baum, M., Rihawi, F., and El Bouhssini, M., New resistance sources to Russian wheat aphid (Diuraphis noxia) in Swedish wheat substitution and translocation lines with rye (Secale cereale) and Leymus mollis, Czech J. Genet. Plant Breed., 2015, vol. 51, pp. 162–165. https://doi.org/10.17221/72/2015-CJGPB

    Article  CAS  Google Scholar 

  4. Asiedu, R., Fisher, J.M., and Driscoll, C.J., Resistance to Heterodera avenae in the rye genome of triticale, Theor. Appl. Genet., 1990, vol. 79, pp. 331–336. https://doi.org/10.1007/BF01186075

    Article  CAS  PubMed  Google Scholar 

  5. Bakala, H.S., Mandahal, K.S., Ankita Sarao, L.K., and Srivastava, P.P., Breeding wheat for biotic stress resistance: achievements, challenges and prospects, in Current Trends in Wheat Research, Ansari, M.R., Ed., IntechOpen, 2022, pp. 1–30. https://doi.org/10.5772/intechopen.97359

    Book  Google Scholar 

  6. Berzonsky, W.A., Ding, H., Haley, S.D., Harris, M.O., Lamb, R.J., McKenzie, R.I.H., Ohm, H.W., Patterson, F.L., Peairs, F.B., Porter, D.R., Ratcliffe, R.H., and Shanower, T.G., Breeding wheat for resistance to insects, Plant Breed Rev., 2003, vol. 22, pp. 221–296.

    Google Scholar 

  7. Cárcamo, H.A., Beres, B.L., Clarke, F., Byers, R.J., Mündel, H.H., May, K., and Depauw, R., Influence of plant host quality on fitness and sex ratio of the wheat stem sawfly (Hymenoptera: Cephidae), Environ. Entomol., 2005, vol. 34, pp. 1579–1592. https://doi.org/10.1603/0046-225X-34.6.1579

    Article  Google Scholar 

  8. Cárcamo, H., Beres, B., Wu, X., Larson, T., and Schwinghamer, T., Effect of plant density on wheat stem sawfly sex ratio, Front. Agron., 2020, vol. 4, pp. 1–10. https://doi.org/10.3389/fagro.2020.00004

    Article  Google Scholar 

  9. Cox, T.S., Bockus, W.W., Gill, B.S., Sears, R.G., Harvey, T.L., Leath, S., and Brown-Guedira, G.L., Registration of KS96WGRC40 hard red winter wheat germplasm resistant to wheat curl mite, Stagonospora leaf blotch and Septoria leaf blotch, Crop Sci., 1999, vol. 39, p. 597.

    Article  Google Scholar 

  10. Crespo-Herrera, L.A., Smith, C.M., Singh, R.P., and Åhman, I., Resistance to multiple cereal aphids in wheat–alien substitution and translocation lines, Arthropod-Plant Interact., 2013, vol. 7, pp. 535–545. https://doi.org/10.1007/s11829-013-9267-y

    Article  Google Scholar 

  11. Crespo-Herrera, L.A., Akhunov, E., Garkava-Gustavs-son, L., Jordan, K.W., Smith, C.M., Singh, R.P., and Åhman, I., Mapping resistance to the bird cherry-oat aphid and the greenbug in wheat using sequence-based genotyping, Theor. Appl. Genet., 2014, vol. 127, pp. 1963–1973. https://doi.org/10.1007/s00122-014-2352-5

    Article  CAS  PubMed  Google Scholar 

  12. Crespo-Herrera, L.A., Singh, R.P., and Åhman, I., Field population development of bird cherry-oat aphid and greenbug (Hemiptera: Aphididae) on wheat-alien substitution and translocation lines, Euphytica, 2015, vol. 203, pp. 249–260. https://doi.org/10.1007/s10681-014-1244-8

    Article  Google Scholar 

  13. Crespo-Herrera, L.A., Garkava-Gustavsson, L., and Åhman, I., A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.), Hereditas, 2017, vol. 154, p. 14. https://doi.org/10.1186/s41065-017-0033-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Crespo-Herrera, L.A., Singh, R.P., Sabraoui, A., and El-Bouhssini, M., Resistance to insect pests in wheat-rye and Aegilops speltoides Tausch translocation and substitution lines, Euphytica, 2019, vol. 215, p. 123. https://doi.org/10.1007/s10681-019-2449-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui, L., Gao, X., Wang, X., Jian, H., Tang, W.-H., Li, H.-L., and Li, H.-J., Characterization of interaction between wheat roots with different resistance and Heterodera filipjevi, Acta Agron. Sin., 2012, vol. 38, pp. 1009–1017. http://www.cnki.net/kcms/detai-l/11.1809.S.20120329.1115.001.html.

    Article  Google Scholar 

  16. Daskalova, N. and Spetsov, P., Taxonomic relationships and genetic variability of wild Secale L. species as a source for valued traits in rye, wheat and triticale breeding, Cytol. Genet., 2020, vol. 54, pp. 71–81. https://doi.org/10.3103/S0095452720010041

    Article  Google Scholar 

  17. Dundas, I.S., Frappell, D.E., Crack, D.M., and Fisher, J.M., Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat, Crop Sci., 2001, vol. 41, pp. 1771–1778.

    Article  CAS  Google Scholar 

  18. El Bouhssini, M., Ogbonnaya, F.C., Chen, M., et al., Sources of resistance in primary synthetic hexaploid wheat (Triticum aestivum L.) to insect pests: Hessian fly, Russian wheat aphid and Sunn pest in the Fertile Crescent, Genet. Resour. Crop Evol., 2013, vol. 60, pp. 621–627. https://doi.org/10.1007/s10722-012-9861-3

    Article  CAS  Google Scholar 

  19. Ferrahi, M., Friebe, B., Hatchett, J.H., Brown-Guedira, G.L., and Gill, B.S., Two step transfer of rye-derived Hessian fly H21 to durum wheat by compensating Robertsonian translocation and induced homoeologous recombination, Int. J. Adv. Res., 2017, vol. 5, pp. 262–270. https://doi.org/10.21474/IJAR01/5529

    Article  Google Scholar 

  20. Fisher, J.M., Towards a consistent laboratory assay for resistance to Heterodera avenae, EPPO Bull., 1982, vol. 12, pp. 445–449.

    Article  Google Scholar 

  21. Friebe, B., Hatchett, J.H., Sears, R.G., and Gill, B.S., Transfer of Hessian fly resistance from ‘Chaupon’ rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation, Theor. Appl. Genet., 1990, vol. 79, pp. 385–389.

    Article  CAS  PubMed  Google Scholar 

  22. Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., and Gill, B.S., Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status, Euphytica, 1996, vol. 91, pp. 59–87. https://doi.org/10.1007/BF00035277

    Article  Google Scholar 

  23. Friebe, B., Kynast, R.G., Hatchett, J.H., Sears, R.G., Wilson, D.L., and Gill, B.S., Transfer of wheat-rye translocation chromosomes conferring resistance to Hessian fly from bread wheat into durum wheat, Crop Sci., 1999, vol. 39, pp. 1692–1696. https://doi.org/10.2135/cropsci1999.3961692x

    Article  Google Scholar 

  24. Fritz, A.K., Caldwell, S., and Worrall, W.D., Molecular mapping of Russian wheat aphid resistance from triticale accession PI 386156, Crop Sci., 1999, vol. 39, pp. 1707–1710. https://doi.org/10.2135/cropsci1999.3961707x

    Article  CAS  Google Scholar 

  25. Geiger, H.H. and Miedaner, T., Rye breeding, in Cereals, in Handbook of Plant Breeding, Carena, M.J., Ed., New York: Springer US, 2009, vol. 3, pp. 157–181. https://doi.org/10.1007/978-0-387-72297-9

    Book  Google Scholar 

  26. Haley, S.D., Peairs, F.B., Walker, C.B., et al., Occurrence of a new Russian wheat aphid biotype in Colorado, Crop Sci., 2004, vol. 44, pp. 1589–1592. https://doi.org/10.2135/cropsci2004.1589

    Article  Google Scholar 

  27. Harvey, T.L., Seifers, D.L., Martin, T.J., Brown-Guedira, G.L., and Gill, B.S., Survival of wheat curl mites on different sources of resistance in wheat, Crop Sci., 1999, vol. 39, pp. 1887–1889. https://doi.org/10.2135/cropsci1999.3961887x

    Article  Google Scholar 

  28. Hatchett, J.H., Sears, R.G., and Cox, T.S., Inheritance of resistance to Hessian fly in rye and in wheat-rye translocation lines, Crop Sci., 1993, vol. 33, pp. 730–734. https://doi.org/10.2135/cropsci1993.0011183X003300040019x

    Article  Google Scholar 

  29. Hesler, L.S., Resistance to Rhopalosiphum padi (Homoptera: Aphididae) in three triticale accessions, J. Econ. Entomol., 2005, vol. 98, pp. 603–610.

    Article  PubMed  Google Scholar 

  30. Hesler, L.S., Haley, S.D., Nkongolo, K.K., and Peairs, F.B., Resistance to Rhopalosiphum padi (Homoptera: Aphididae) in triticale and triticale-derived wheat lines resistant to Diuraphis noxia (Homoptera: Aphididae), J. Entomol. Sci., 2007, vol. 42, pp. 217–227. https://doi.org/10.18474/0749-8004-42.2.217

    Article  Google Scholar 

  31. Hu, X.S., Liu, Y.J., Wang, Y.-H., Wang, Z., Yu, X., Wang, B., Zhang, G.-S., Liu, X.-F., Hu, Z.-Q., Zhao, H.-Y., and Liu, T.-X., Resistance of wheat accessions to the English grain aphid Sitobion avenae, PLoS One, 2016, vol. 11, p. e0156158. https://doi.org/10.1371/journal.pone.0156158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johansson, E., Henriksson, T., Prieto-Linde, M.L., Andersson, S., Ashraf, R., and Rahmatov, M., Diverse wheat-alien introgression lines as a basis for durable resistance and quality characteristics in bread wheat, Front. Plant Sci., 2020, vol. 11, p. 1067. https://doi.org/10.3389/fpls.2020.01067

    Article  PubMed  PubMed Central  Google Scholar 

  33. Karelov, A.V., Pylypenko, L.A., Kozub, N.A., Sozinov, I.A., and Blume, Ya.B., Genetic background of the resistance against parasitic nematodes in wheat, Cytol. Genet., 2019, vol. 53, pp. 315–320. https://doi.org/10.3103/S0095452719040066

    Article  Google Scholar 

  34. Khalaf, L., Chuang, W.-P., Aguirre-Rojas, L.M., Klein, P.P., and Smith, C.M., Differences in Aceria tosichella population responses to wheat resistance genes and wheat virus transmission, Arthropod-Plant Interact., 2019. vol. 13. pp. 807–818. https://doi.org/10.1007/s11829-019-09717-9

    Article  Google Scholar 

  35. Kim, W., Johnson, J.W., Baenziger, P.S., and Gaines, C.S., Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources, Crop Sci., 2004, vol. 44, pp. 1254–1258. https://doi.org/10.2135/cropsci2004.1254

    Article  Google Scholar 

  36. Koch, K.G., Chapman, K., Louis, J., Heng-Moss, T., and Sarath, G., Plant tolerance: a unique approach to control Hemipteran pests, Front. Plant Sci., 2016, vol. 7, p. 1363. https://doi.org/10.3389/fpls.2016.01363

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kumlay, A.M., Baenziger, P.S., Gill, K.S., Shelton, D.R., Graybosch, R.A., Lukaszewski, A.J., and Wesenberg, D.M., Understanding the effect of rye chromatin in bread wheat, Crop Sci., 2003, vol. 43, pp. 1643–1651.

    Article  Google Scholar 

  38. Lapitan, N.L.V., Peng, J., and Sharma, V., A high-density map and PCR markers for Russian wheat aphid resistance gene Dn7 on chromosome 1RS/1BL, Crop Sci., 2007, vol. 47, pp. 811–820. https://doi.org/10.2135/cropsci2006.08.0529

    Article  CAS  Google Scholar 

  39. Li, G., Wang, Y., Chen, M.S., et al., Precisely mapping a major gene conferring resistance to hessian fly in bread wheat using genotyping-by-sequencing, BMC Genomics, 2015, vol. 16, p. 108. https://doi.org/10.1186/s12864-0151297-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu, X.M., Brown-Guedira, G.L., Hatchett, J.H., Owuoche, J.O., and Chen, M.S., Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat, Theor. Appl. Genet., 2005, vol. 111, pp. 1308–1315. https://doi.org/10.1007/s00122-005-0059-3

    Article  CAS  PubMed  Google Scholar 

  41. Liu, S., Rudd, J.C., Bai, G., Haley, S.D., Ibra-him, A.M.H., Xue, Q., Hays, D.B., Graybosch, R.A., Devkota, R.N., and Amand, P.St., Molecular markers linked to important genes in hard winter wheat, Crop Sci., 2014, vol. 54, pp. 1304–1321. https://doi.org/10.2135/cropsci2013.08.0564

    Article  CAS  Google Scholar 

  42. Liu, X.L., Lu, B.Y., Wang, C.Y., Wang, Y.J., Zhang, H., Tian, Z.R., and Ji, W.Q., Identification of Sitobion avenae F. resistance and genetic diversity of wheat landraces from Qinling Mountains, China, Cereal Res. Commun., 2018, vol. 46, pp. 104–113. https://doi.org/10.1556/0806.45.2017.071

    Article  CAS  Google Scholar 

  43. Lu, H., Rudd, J.C., Burd, J.D., and Weng, Y., Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL.1RS wheat-rye translocations, Plant Breed., 2010, vol. 129, pp. 472–476. https://doi.org/10.1111/j.1439-0523.2009.01722.x

    Article  CAS  Google Scholar 

  44. Lukaszewski, A.J., Further manipulation by centric misdivision of the 1RS.1BL translocation in wheat, Euphytica, 1997, vol. 94, pp. 257–261. https://doi.org/10.1023/A:1002916323085

    Article  Google Scholar 

  45. Lukaszewski, A.J., Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination, Crop Sci., 2000, vol. 40, pp. 216–225.

    Article  CAS  Google Scholar 

  46. Lukaszewski, A.J., Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale, Crop Sci., 2006, vol. 46, pp. 2183–2194. https://doi.org/10.2135/cropsci2006.03.0135

    Article  CAS  Google Scholar 

  47. Lukaszewski, A.J., Introgressions between wheat and rye, in Alien Introgression in Wheat, Cytogenetics, Molecular Biology, Genomics, Molnár-Láng, M., Ceoloni, C., and Doležel, J., Eds., Cham: Springer-Verlag, 2015, pp. 163–189. https://doi.org/10.1007/978-3-319-23494-6_7

    Book  Google Scholar 

  48. Lukaszewski, A.J., Porter, D.R., Baker, C.A., Rybka, K., and Lapinski, B., Attempts to transfer Russian wheat aphid resistance from a rye chromosome in Russian triticales to wheat, Crop Sci., 2001, vol. 41, pp. 1743–1749. https://doi.org/10.2135/cropsci2001.1743

    Article  Google Scholar 

  49. Malik, R., Brown-Guedira, G.L., Smith, C.M., Harvey, T.L., and Gill, B.S., Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat, Crop Sci., 2003, vol. 43, pp. 644–650.

    CAS  Google Scholar 

  50. Marais, G.F., Horn, M., and Du Toit, F., Intergeneric transfer (rye to wheat) of gene(s) for Russian wheat aphid resistance, Plant Breed., 1994, vol. 113, pp. 265–271. https://doi.org/10.1111/j.1439-0523.1994.tb00735.x

    Article  Google Scholar 

  51. Mondal, S., Rutkoski, J.E., Velu, G., et al., Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches, Front. Plant Sci., 2016, vol. 7, p. 991. https://doi.org/10. 3389/fpls.2016.00991

  52. Mookiah, S., Sivasubramaniam, B., Thangaraj, T., and Govindaraj, S., Host plant resistance, in Molecular Approaches for Sustainable Insect Pest Management, Omkar, Ed., Singapore: Springer, 2021, pp. 1–56. https://doi.org/10.1007/978-981-16-3591-5

  53. Moskal, K., Kowalik, S., Podyma, W., Łapiński, B., and Boczkowska, M., The pros and cons of rye chromatin introgression into wheat genome, Agronomy, 2021, vol. 11, no. 3, p. 456. https://doi.org/10.3390/agronomy11030456

    Article  CAS  Google Scholar 

  54. Newell, M.A. and Butler, T.J., Forage rye improvement in the Southern United States: A review, Crop Sci., 2013, vol. 53, pp. 38–47. https://doi.org/10.2135/cropsci2012.05.0319

    Article  CAS  Google Scholar 

  55. Nkongolo, K.K., Lapitan, N.L.V., and Quick, J.S., Genetic and cytogenetic analyses of Russian wheat aphid resistance in triticale × wheat hybrids and progenies, Crop Sci., 1996, vol. 36, pp. 1114–1119. https://doi.org/10.2135/cropsc-i1996.0011183X003600050007x

    Article  Google Scholar 

  56. Nkongolo, K.K., Haley, S.D., Kim, N.S., Michael, P., Fedak, G., Quick, J.S., and Peairs, F.B., Molecular cytogenetic and agronomic characterization of advanced generations of wheat x triticale hybrids resistant to Diuraphis noxia (Mordvilko): application of GISH and microsatellite markers, Genome, 2009, vol. 52, pp. 353–360. https://doi.org/10.1139/G09-010

    Article  CAS  PubMed  Google Scholar 

  57. Nkongolo, K.K., Scott, D., Haley, S.D., Quick, J.S., and Peairs, F.B., Registration of six wheat-rye addition lines resistant to the Russian wheat aphid, J. Plant Regist., 2011, vol. 5, pp. 426–429. https://doi.org/10.3198/jpr2010.11.0637crgs

    Article  Google Scholar 

  58. Özberk, I., Atlı, A., Yücel, A., Özberk, F., and Coşkun, Y., Wheat stem sawfly (Cephus pygmaeus L.) damage; impacts on grain yield, quality and marketing prices in Anatolia, Crop Prot., 2005, vol. 24, pp. 1054–1060. https://doi.org/10.1016/j.cropro.2005.03.006

    Article  Google Scholar 

  59. Peng, J., Wang, H., Haley, S., Peairs, F.B., and Lapitan, N.L.V., Molecular mapping of the Russian wheat aphid resistance gene Dn2414 in wheat, Crop Sci., 2007, vol. 47, pp. 2418–2429. https://doi.org/10.2135/cropsci2007.03.0137

    Article  CAS  Google Scholar 

  60. Puterka, G.J., Xu, X., Li, G., Carver, B.F., and Guo, P.P., Mechanisms of resistance of new wheat gene Dn10 in comparison with other Dn genes resistant to Russian wheat aphid, Crop Sci., 2020, vol. 60, pp. 1782–1788. https://doi.org/10.1002/csc2.20051

    Article  CAS  Google Scholar 

  61. Qiao, F., Kong, L.-A., Peng, H., Huang, W.-K., Wu, D.-K., Liu, S.-M., Clarke, J.L., Qiu, D.-W., and Peng, D.-L., Transcriptional profiling of wheat (Triticum aestivum L.) during a compatible interaction with the cereal cyst nematode Heterodera avenae, Sci. Rep., 2019, vol. 9, p. 2184. https://doi.org/10.1038/s41598-018-37824-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rabinovich, S.V., Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L., Euphytica, 1998, vol. 100, pp. 323–340. https://doi.org/10.1023/A:1018361819215

    Article  Google Scholar 

  63. Rakoczy-Trojanowska, M., Bolibok-Brągoszewska, H., Myśków, B., Dzięgielewska, M., Stojałowski, S., Grądzielewska, A., Boczkowska, M., and Moskal, K., Genetics and genomics of stress tolerance, in The Rye Genome. Compendium of Plant Genomes, Rabanus-Wallace, M.T. and Stein, N., Eds., Springer Cham, 2021, pp. 213–236. https://doi.org/10.1007/978-3-030-83383-1_11

    Book  Google Scholar 

  64. Riedell, W.E., Kieckhefer, R.W., Langham, M.A.C., and Hesler, L.S., Root and shoot responses to bird cherry-oat aphids and Barley yellow dwarf virus in spring wheat, Crop Sci., 2003, vol. 43, pp. 1380–1386.

    Article  Google Scholar 

  65. Royer, T.A., Pendleton, B.B., Elliott, N.C., and Giles, K.L., Greenbug (Hemiptera: Aphididae) Biology, ecology, and management in wheat and sorghum, J. Integr. Pest Manage., 2015, vol. 6, p. 19. https://doi.org/10.1093/jipm/pmv018

    Article  Google Scholar 

  66. Sandhu, S. and Kang, M., Advances in breeding for resistance to insects. in Breeding Insect Resistant Crops for Sustainable Agriculture, Arora, R. and Sandhu, S., Eds., Singapore: Springer-Verlag, 2017, pp. 67–99. https://doi.org/10.1007/978-981-10-6056-4_3

    Book  Google Scholar 

  67. Schlegel, R., Melz, G., and Mettin, D., Rye cytology, cytogenetics and genetics—current status, Theor. Appl. Genet., 1986, vol. 72, pp. 721–734. https://doi.org/10.1007/BF00266535

    Article  CAS  PubMed  Google Scholar 

  68. Sebesta, E.E., Wood, E.A., Porter, D.R., Webster, J.A., and Smith, E.L., Registration of Gaucho greenbug-resistant triticale germplasm, Crop Sci., 1994, vol. 34, p. 1428. https://doi.org/10.2135/cropsci1994.0011183X003400050081x

    Article  Google Scholar 

  69. Sebesta, E.E., Wood, E.A., Porter, D.R., Webster, J.A., and Smith, E.L., Registration of Amigo wheat germplasm resistant to greenbug, Crop Sci., 1995, vol. 35, p. 293. https://doi.org/10.2135/cropsci1995.0011183X003500010074x

    Article  Google Scholar 

  70. Singh, B., Simon, A., Halsey, K., Kurup, S., Clark, S., and Aradottir, G.I., Characterisation of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces, Ann. Appl. Biol., 2020, vol. 177, pp. 184–194. https://doi.org/10.1111/aab.12616

    Article  PubMed  PubMed Central  Google Scholar 

  71. Singh, B., Jasrotia, P., and Crespo-Herrera, L., Breeding for aphid resistance in wheat: status and future prospects, in New Horizons in Wheat and Barley Research. Crop Protection and Resource Management, Kashyap, P.L., Gupta, V., Gupta, O.P., Sendhil, R., Gopalareddy, K., Jasrotia, P.P., and Singh, G.P., Eds., Singapore: Springer-Verlag, 2022, pp. 381–399. https://doi.org/10.1007/978-981-16-4134-3

    Book  Google Scholar 

  72. Spetsov, P. and Daskalova, N., Resistance to pathogens in wheat-rye and triticale genetic stocks, J. Plant Pathol., 2022, vol. 104, pp. 99–114. https://doi.org/10.1007/s42161-021-01019-5

    Article  Google Scholar 

  73. Taylor, C., Shepherd, K.W., and Langridge, P.P., A molecular genetic map of the long arm of chromosome 6R of rye incorporating the cereal cyst nematode resistance gene, CreR, Theor. Appl. Genet., 1998, vol. 97, pp. 1000–1012. https://doi.org/10.1007/s001220050984

    Article  CAS  Google Scholar 

  74. Tyrka, M. and Chełkowski, J., Enhancing the resistance of triticale by using genes from wheat and rye, J. Appl. Genet., 2004, vol. 45, pp. 283–295.

    PubMed  Google Scholar 

  75. Varella, A.C., Weaver, D.K., Sherman, J.D., Black, N.K., et al., Association analysis of stem solidness and wheat stem sawfly resistance in a panel of North American spring wheat germplasm, Crop Sci., 2015, vol. 55, pp. 2046–2055. https://doi.org/10.2135/cropsci2014.12.0852

    Article  CAS  Google Scholar 

  76. Wang, D., Liu, D., Shi, X., Yang, Y., Zhang, N, and Shang, Z., Transcriptome profiling revealed potentially important roles of defensive gene expression in the divergence of insect biotypes: a case study with the cereal aphid Sitobion avenae, BMC Genomics, 2020, vol. 21, p. 546. https://doi.org/10.1186/s12864-020-06950-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ward, S., van Helden, M., Heddle, T., Ridland, P.M., Pirtle, E., and Umina, P.A., Biology, ecology and management of Diuraphis noxia (Hemiptera: Aphididae) in Australia, Aust. Entomol., 2020, vol. 59, pp. 238–252. https://doi.org/10.1111/aen.12453

    Article  Google Scholar 

  78. Webster, J.A., Resistance in triticale to the Russian wheat aphid (Homoptera: Aphididae), J. Econ. Entomol., 1990, vol. 83, pp. 1091–1095. https://doi.org/10.1093/jee/83.3.1091

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Spetsov.

Ethics declarations

The authors declare that they have no conflicts of interest. This research did not involve human participants and/or animals.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spetsov, P., Daskalova, N. Genetic Basis of Pest Resistance in Wheat-Rye and Triticale Stocks. Cytol. Genet. 57, 374–383 (2023). https://doi.org/10.3103/S0095452723040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723040114

Navigation