Skip to main content
Log in

Bialelic Pathogenic (c.830G>A(p.R277Q)) Variant Disrupting the GNE Gene Function and Causes Nonaka myopathy Phenotype

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Nonaka myopathy (MIM 605820) is caused by homozygous pathogenic variants in the GNE gene. It is a recessively inherited early adult-onset myopathy that usually preserves the quadriceps and presents with bilateral foot drop, usually caused by anterior tibialis weakness. In patients with Nonaka myopathy, serum creatine kinases are slightly elevated, muscle weakness progresses slowly, and ambulation loss develops after 15–20 yr. The current study aims to raise awareness of Nonaka myopathy that occurs as a rare phenotype due to pathogenic variants in GNE gene. Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and co-segregation analysis of the family were done by Sanger sequencing. Also the homology model of the mutant protein was created with the ProMod3 algorithm. We identified a bialelic pathogenic variant (c.830G>A) in GNE gene, which explain the patients' clinical status. We present the main findings of two siblings with Nonaka myopathy together with detailed clinical and genetic profiles of the patients together with a three-dimensional mutant GNE protein model. We think that the clinical characteristics and the effect of the (c.830G>A) variant will facilitate our understanding of GNE gene in Nonaka myopathy pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Argov, Z., GNE myopathy: a personal trip from bedside observation to therapeutic trials, Acta Myol., 2014, vol. 33, no. 2, pp. 107–110.

    PubMed  PubMed Central  Google Scholar 

  2. Awasthi, K., Srivastava, A., Bhattacharya, S., et al., Tissue specific expression of sialic acid metabolic pathway: role in GNE myopathy, J. Muscle Res. Cell Motil., 2021, vol. 42, no. 1, pp. 99–116. https://doi.org/10.1007/s10974-020-09590-7

    Article  CAS  PubMed  Google Scholar 

  3. Barp, A., Mosca, L., and Sansone, V.A., Facilitations and hurdles of genetic testing in neuromuscular disorders, Diagnostics (Basel), 2021, vol. 11, p. 701. https://doi.org/10.3390/diagnostics11040701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Buchan, D.W., Minneci, F., Nugent, T.C., et al., Scalable web services for the PSIPRED Protein Analysis Workbench, Nucleic Acids Res., 2013, vol. 41, no. W1, pp. W349–W357. https://doi.org/10.1093/nar/gkt381

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carrillo, N., Malicdan, M.C., and Huizing, M., GNE myopathy: etiology, diagnosis, and therapeutic challenges, Neurotherapeutics, 2018, vol. 15, no. 4, pp. 900–914. https://doi.org/10.1007/s13311-018-0671-y

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carrillo, N., Malicdan, M.C., and Gahl, W.A., Safety and efficacy of N-acetylmannosamine (ManNAc) in patients with GNE myopathy: an open-label phase 2 study, Genet. Med., 2021, vol. 23, no. 11, pp. 2067–2075. https://doi.org/10.1038/s41436-021-01259-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Celeste, F.V., Vilboux, T., Ciccone, C., et al., Mutation update for GNE gene variants associated with GNE myopathy, Hum. Mutat., 2014, vol. 35, no. 8, pp. 915–926. https://doi.org/10.1002/humu.22583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cerino, M., Gorokhova, S., Behin, A., et al., Novel pathogenic variants in a french cohort widen the mutational spectrum of GNE myopathy, J. Neuromuscular Dis., 2015, vol. 2, no. 2, pp. 131–136. https://doi.org/10.3233/JND-150074

    Article  Google Scholar 

  9. Chen, V.B., Arendall, W.B., Headd, J.J., et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, vol. 66, no. 1, pp. 12–21. https://doi.org/10.1107/S0907444909042073

    Article  CAS  Google Scholar 

  10. Chen, Y., Xi, J., Zhu, W., et al., Correction: GNE myopathy in Chinese population: hotspot and novel mutations, J. Hum. Genet., 2019, vol. 64, no. 3, p. 269. https://doi.org/10.1038/s10038-018-0547-3

    Article  CAS  PubMed  Google Scholar 

  11. Crowe, K.E., Zygmunt, D.A., and Martin, P.T., Visualizing muscle sialic acid expression in the GNED207VTgGne-/- Cmah-/- model of GNE myopathy: A comparison of dietary and gene therapy approaches, J. Neuromuscular Dis., 2022, vol. 9, no. 1, pp. 53–71. https://doi.org/10.3233/JND-200575

    Article  Google Scholar 

  12. Effertz, K., Hinderlich, S., and Reutter, W., Selective loss of either the epimerase or kinase activity of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase due to site-directed mutagenesis based on sequence alignments, J. Biol. Chem., 1999, vol. 274, no. 40, pp. 28771–28778. https://doi.org/10.1074/jbc.274.40.28771

    Article  CAS  PubMed  Google Scholar 

  13. Eisenberg, I., Avidan, N., Potikha, T., et al., The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy, Nat. Genet., 2001, vol. 29, no. 1, pp. 83–87. https://doi.org/10.1038/ng718

    Article  CAS  PubMed  Google Scholar 

  14. Grecu, N., Villa, L., Cavalli, M., et al., Motor axonal neuropathy associated with GNE mutations, Muscle Nerve, 2021, vol. 63, no. 3. pp. 396–401. https://doi.org/10.1002/mus.27102

    Article  CAS  PubMed  Google Scholar 

  15. Grover, S., and Arya, R., Role of UDP-N-acetylglucosamine2-epimerase/N-acetylmannosamine kinase (GNE) in β1-integrin-mediated cell adhesion, Mol. Neurobiol., 2014, vol. 50, no. 2, pp. 257–273. https://doi.org/10.1007/s12035-013-8604-6

    Article  CAS  PubMed  Google Scholar 

  16. Hanisch, F., Weidemann, W., Grossmann, M., et al., Sialylation and muscle performance: sialic acid is a marker of muscle ageing, PLoS One, 2013, vol. 8, no. 12, p. e80520. https://doi.org/10.1371/journal.pone.0080520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harazi, A., Becker-Cohen, M., Zer, H., et al., The interaction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) and alpha-actinin 2 is altered in GNE myopathy M743T mutant, Mol. Neurobiol., 2017, vol. 54, no. 4, pp. 2928–2938. https://doi.org/10.1007/s12035-016-9862-x

    Article  CAS  PubMed  Google Scholar 

  18. Kazamel, M., Sorenson, E.J., and Milone, M., Clinical and electrophysiological findings in hereditary inclusion body myopathy compared with sporadic inclusion body myositis, J. Clin. Neuromuscular Dis., 2016, vol. 17, no. 4, pp. 190–196. https://doi.org/10.1097/CND.0000000000000113

    Article  Google Scholar 

  19. Koroglu, C., Yilmaz, R., Sorgun, M.H., et al., GNE missense mutation in recessive familial amyotrophic lateral sclerosis, Neurogenetics, 2017, vol. 18, no. 4, pp. 237–243. https://doi.org/10.1007/s10048-017-0527-3

    Article  CAS  PubMed  Google Scholar 

  20. Krause, S., Hinderlich, S., Amsili, S., et al., Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells, Exp. Cell Res., 2005, vol. 304, no. 2, pp. 365–379. https://doi.org/10.1016/j.yexcr.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  21. Lv, X.Q., Xu, L., Lin, P.F., et al., Clinical, genetic, and pathological characterization of GNE myopathy in China, Neurol. Sci., 2022, vol. 43, pp. 4483–4491. https://doi.org/10.1007/s10072-022-05938-8

    Article  PubMed  Google Scholar 

  22. Nishino, I., Carrillo-Carrasco, N., and Argov, Z., GNE myopathy: current update and future therapy, J. Neurol. Neurosurg. Psychiatry, 2015. vol. 86. no. 4. pp. 385–392. https://doi.org/10.1136/jnnp-2013-307051

    Article  PubMed  Google Scholar 

  23. Pandurangan, A.P., Ochoa-Montano, B., Ascher, D.B., et al., SDM: a server for predicting effects of mutations on protein stability, Nucleic Acids Res., 2017, vol. 45, no. W1, pp. W229–W235. https://doi.org/10.1093/nar/gkx439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pires, D.E., Ascher, D.B., and Blundell, T.L., DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach, Nucleic Acids Res., 2014a, vol. 42, pp. W314–W319. https://doi.org/10.1093/nar/gku411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pires, D.E., Ascher, D.B., and Blundell, T.L., mCSM: predicting the effects of mutations in proteins using graph-based signatures, Bioinformatics, 2014b, vol. 30, no. 3, pp. 335–342. https://doi.org/10.1093/bioinformatics/btt691

    Article  CAS  PubMed  Google Scholar 

  26. Pogoryelova, O., Cammish, P., Mansbach, H., et al., Phenotypic stratification and genotype-phenotype correlation in a heterogeneous, international cohort of GNE myopathy patients: First report from the GNE myopathy Disease Monitoring Program, registry portion, Neuromuscular Disord., 2018, vol. 28, no. 2, pp. 158–168. https://doi.org/10.1016/j.nmd.2017.11.001

    Article  Google Scholar 

  27. Pogoryelova, O., Gonzalez Coraspe, J.A., Nikolenko, N., et al., GNE myopathy: from clinics and genetics to pathology and research strategies, Orphanet J. Rare Dis., 2018, vol. 13, no. 1, p. 70. https://doi.org/10.1186/s13023-018-0802-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pogoryelova, O., Wilson, I.J., Mansbach, H., et al., GNE genotype explains 20% of phenotypic variability in GNE myopathy, Neurol. Genet., 2019, vol. 5, no. 1, p. e308. https://doi.org/10.1212/NXG.0000000000000308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Previtali, S.C., Zhao, E., Lazarevic, D., et al., Expanding the spectrum of genes responsible for hereditary motor neuropathies, J. Neurol. Neurosurg. Psychiatry, 2019, vol. 90, no. 10, pp. 1171–1179. https://doi.org/10.1136/jnnp-2019-320717

    Article  PubMed  Google Scholar 

  30. Richards, S., Aziz, N., Bale, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, Genet. Med., 2015, vol. 17, no. 5, pp. 405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rodrigues, C.H.M., Myung, Y., Pires, D.E.V., et al., mCSM-PPI2: predicting the effects of mutations on protein-protein interactions, Nucleic Acids Res., 2019, vol. 47, no. W1, pp. W338–W344. https://doi.org/10.1093/nar/gkz383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodrigues, C.H.M., Pires, D.E.V., and Ascher, D.B., DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations, Prot. Sci., 2021, vol. 30, no. 1, pp. 60–69. https://doi.org/10.1002/pro.3942

    Article  CAS  Google Scholar 

  33. Savarese, M., Sarparanta, J., Vihola, A., et al., Panorama of the distal myopathies, Acta Myologica, 2020, vol. 39, no. 4, pp. 245–265. https://doi.org/10.36185/2532-1900-028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schauer, R., Sialic acids as regulators of molecular and cellular interactions, Curr. Opin. Struct. Biol., 2009, vol. 19, no. 5, pp. 507–514. https://doi.org/10.1016/j.sbi.2009.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwarzkopf, M., Knobeloch, K.P., Rohde, E., et al., Sialylation is essential for early development in mice, Proc. Natl. Acad. Sci., 2002, vol. 99, no. 8, pp. 5267–5270. https://doi.org/10.1073/pnas.072066199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma, S., Chanana, P., Bharadwaj, R., et al., Functional characterization of GNE mutations prevalent in Asian subjects with GNE myopathy, an ultra-rare neuromuscular disorder, Biochimie, 2022, vol. 7, no. 199, pp. 36–45. https://doi.org/10.1016/j.biochi.2022.03.014

    Article  CAS  Google Scholar 

  37. Stasche, R., Hinderlich, S., Weise, C., et al., A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver, J. Biol. Chem., 1997, vol. 272, no. 39, pp. 24319–324. https://doi.org/10.1074/jbc.272.39.24319

    Article  CAS  PubMed  Google Scholar 

  38. Waterhouse, A., Bertoni, M., Bienert, S., et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 2018, vol. 46, no. W1, pp. W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weidemann, W., Klukas, C., Klein, A., et al., Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression, Glycobiology, 2010, vol. 20, no. 1, pp. 107–117. https://doi.org/10.1093/glycob/cwp153

    Article  CAS  PubMed  Google Scholar 

  40. Wiederstein, M., and Sippl, M.J., ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Res., 2007, vol. 35, pp. W407–W410. https://doi.org/10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu, J., and Zhang, Y., How significant is a protein structure similarity with TM-score = 0.5?, Bioinformatics, 2010, vol. 26, no. 7, pp. 889−895. https://doi.org/10.1093/bioinformatics/btq066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yubero, D., Natera-de Benito, D., Pijuan, J., et al., The increasing impact of translational research in the molecular diagnostics of neuromuscular diseases, Int. J. Mol. Sci., 2021, vol. 22, no. 8, p. 4274. https://doi.org/10.3390/ijms22084274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, K.Y., Duan, H.Q., Li, Q.X., et al., Expanding the clinicopathological-genetic spectrum of GNE myopathy by a Chinese neuromuscular centre, J. Cell Mol. Med., 2021, vol. 25, no. 22, pp. 10494–503. https://doi.org/10.1111/jcmm.16978

  44. Zhu, W., Mitsuhashi, S., Yonekawa, T., et al., Missing genetic variations in GNE myopathy: rearrangement hotspots encompassing 5′UTR and founder allele, J. Hum. Genet., 2017, vol. 62, no. 2, pp. 159–166. https://doi.org/10.1038/jhg.2016.134

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Doğan.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. We alone are responsible for the content and writing of this article. We thank the patients for their participation in our study. Written informed consents for medical examinations, genomic analyses and case presentations were obtained from all participants and human specimen were collected in accordance with the criteria of the Declaration of Helsinki.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, M., Akbulut, E., Gezdirici, A. et al. Bialelic Pathogenic (c.830G>A(p.R277Q)) Variant Disrupting the GNE Gene Function and Causes Nonaka myopathy Phenotype. Cytol. Genet. 57, 347–355 (2023). https://doi.org/10.3103/S0095452723040035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723040035

Navigation