Skip to main content
Log in

Influence of Cerium and Stibium Additives on Sensitivity of Semiconductor Sensors Based on Nanosized SnO2 to Hydrogen

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Semiconductor materials based on SnO2 with different contents of cerium and stibium have been obtained. Their phase compositions, particle sizes and sensitivities of semiconductor sensors based on them to hydrogen have been studied. It is found that introduction of cerium into the material contributes to reduce the sizes of SnO2 nanoparticles. Changes in the values of the sensor responses to hydrogen are explained by influence of catalytic activity of cerium and the competing effect of the introduced stibium on conductivities of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. A. Sobczak-Kupiec, Nanomed. Nanotechnol., 12, 2459-2473 (2016).

    Article  CAS  Google Scholar 

  2. K. B. Tan, Sep. Purif. Technol., 150, 229-242 (2015).

    Article  CAS  Google Scholar 

  3. X. Liu, D. Wang, and Y. Li, Nano Today, 7, 448-466 (2012).

    Article  CAS  Google Scholar 

  4. Y. Lin, Z. Chen, and X. Y. Li, Trends Biotechnol., 34, No. 4, 303-315 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. N. Barsan, D. Koziej, and U. Weimar, Sens. Actuators B., 121, 18-35 (2007).

    Article  CAS  Google Scholar 

  6. M. Batzill and U. Diebold, Prog. Surf. Sci., 79, 47-154 (2005).

    Article  CAS  Google Scholar 

  7. Y. Luo, C. Zhang, B. Zheng, et al., Int. J. Hydrog. Energy, 42, No. 31, 20386-20397 (2017).

    Article  CAS  Google Scholar 

  8. K. E. Geckeler and E. Rosenberg, Functional Nanomaterials. American Scientific Publishers, Valencia (2006).

    Google Scholar 

  9. A.V. Marikutsa, M. N. Rumyantseva, A. M. Gaskov, et al., Inorg. Mater., 51, No. 13, 1329-1347 (2015).

    Article  CAS  Google Scholar 

  10. L. P. Oleksenko, G. V. Fedorenko, I. P. Matushko, Funct. Mater., 26, No. 4, 741-747 (2018).

    Article  Google Scholar 

  11. F. Gyger, A. Sackmann, M. Hubner, et al., Part. Part. Syst. Charact., 31, 591-596 (2014).

    Article  CAS  Google Scholar 

  12. M. Gaidi, B. Chenevier, and M. Labeau, Sens. Actuators B., 62, 43-48 (2000).

    Article  CAS  Google Scholar 

  13. A. Cabot, J. Arbiol, and J. R. Morante, Sens. Actuators B., 70, 87-100 (2000).

    Article  CAS  Google Scholar 

  14. E. Roduner, Chem. Soc. Rev., 35, 583-592 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. A. I. Buvailo, L. P. Oleksenko, N. P. Maksimovich, et al., Theor. Exp. Chem., 46, No. 3, 153-157 (2010).

    Article  CAS  Google Scholar 

  16. W. Chen, H. Gan, W. Zhang, et al., J. Nanomater., 2014, 1-7 (2014).

    Google Scholar 

  17. Y. Lingmin, W. Chen, H. Gan, W. Zhang, et al., Appl. Surf. Sci., 257, No. 7, 3140-3144 (2011).

    Article  Google Scholar 

  18. I. P. Matushko, H. O. Arinarkhova, L. P. Oleksenko, et al., Mol. Cryst. Liq. Cryst., 673, No. 1, 23-31 (2018).

    Article  CAS  Google Scholar 

  19. M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, Surf. Sci. Rep., 62, 219-270 (2007).

    Article  CAS  Google Scholar 

  20. T. Montini, M. Melchionna, M. Monai, et al., Chem. Rev., 116, 5987-6041 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. I. Sulym, D. Sternik, L. Lutsenko, et al., Surf. Interfaces, 5, 8-14 (2016).

    Article  CAS  Google Scholar 

  22. G. Fedorenko, L. Oleksenko, N. Maksymovych, et al., J. Mater. Sci., 55, 16612-16624 (2020).

    Article  CAS  Google Scholar 

  23. L. P. Oleksenko, G. V. Fedorenko, and N. P. Maksymovych, Voprosy Khimii i Khimicheskoi Tekhnologii, No. 3, 134-139 (2020).

    Google Scholar 

  24. J. Rebholz, P. Bonanati, C. Jaeschke, et al., Sens. Actuators B., 188, 631-636 (2013).

    Article  CAS  Google Scholar 

  25. G. Fedorenko, L. Oleksenko, and N. Maksymovych, Adv. Mater. Sci. Eng., 2019, 5190235 (2019).

    Article  Google Scholar 

  26. C. Hammond, The Basics of Crystallography and Diffraction, Oxford, Oxford University Press (2009).

    Google Scholar 

  27. ASTM Diffraction Date Cards of X-Ray Diffraction Data, American Society for testing and materials, Philadelphia (1946-1996).

  28. G. Zhang, C. Xie, S. Zhang, et al., J. Phys. Chem. C., 118, 18097-18109 (2014).

    Article  CAS  Google Scholar 

  29. C. Xu, N. Tamaki, N. Miura, et al., J. Mater. Sci., 27, 963-971 (1992).

    Article  CAS  Google Scholar 

  30. F. Th. Jaramillo, K. P. Jorgensen, J. Bonde, et al., Science, 317, No. 5834, 100-102 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. X. H. Zhang, G. J. Li, and S. Kawi, Sens. Actuators B., 60, 64-70 (1999).

    Article  CAS  Google Scholar 

  32. L. P. Oleksenko, N. P. Maksymovych, and H. O. Arinarkhova, Theor. Exp. Chem., 54, No. 4, 235-241 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was performed with the support of the Ministry of Education and Science of Ukraine (a grant for the prospective development of the scientific direction of “Mathematical Sciences and Natural Sciences” of Taras Shevchenko National University of Kyiv).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Oleksenko.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 2, pp. 122-127, March-April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleksenko, L.P., Fedorenko, G.V. & Maksymovych, N.P. Influence of Cerium and Stibium Additives on Sensitivity of Semiconductor Sensors Based on Nanosized SnO2 to Hydrogen. Theor Exp Chem 59, 136–142 (2023). https://doi.org/10.1007/s11237-023-09773-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-023-09773-6

Keywords

Navigation