Skip to main content
Log in

Herbrand complexity and the epsilon calculus with equality

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The \(\varepsilon \)-elimination method of Hilbert’s \(\varepsilon \)-calculus yields the up-to-date most direct algorithm for computing the Herbrand disjunction of an extensional formula. A central advantage is that the upper bound on the Herbrand complexity obtained is independent of the propositional structure of the proof. Prior (modern) work on Hilbert’s \(\varepsilon \)-calculus focused mainly on the pure calculus, without equality. We clarify that this independence also holds for first-order logic with equality. Further, we provide upper bounds analyses of the extended first \(\varepsilon \)-theorem, even if the formalisation incorporates so-called \(\varepsilon \)-equality axioms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. More precisely on Page 21 of [3] it is stated that “If equality is present, however, the maximal rank of critical formulas will also play a role.”.

  2. Kindly see https://en.wikipedia.org/wiki/Drinker_paradox.

  3. A term is fully indicated if every occurrence of the term is obtained by a replacement [27, Definition 1.6].

References

  1. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. Springer, Berlin (1934)

    Google Scholar 

  2. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. 2. Springer, Berlin (1939)

    Google Scholar 

  3. Moser, G., Zach, R.: The epsilon calculus and Herbrand complexity. Stud. Log. 82(1), 133–155 (2006)

    Article  MathSciNet  Google Scholar 

  4. Gentzen, G.: Untersuchungen über das logische Schließen I-II. Math. Z. 39(176–210), 405–431 (1934)

    Google Scholar 

  5. Gerhardy, P., Kohlenbach, U.: Extracting Herbrand disjunctions by functional interpretation. Arch. Math. Log. 44(5), 633–644 (2005)

    Article  MathSciNet  Google Scholar 

  6. Zach, R.: Semantics and proof theory of the epsilon calculus. In: Ghosh, S., Prasad, S. (eds.) Proceedings of the Logic and Its Applications—7th Indian Conference, ICLA 2017, Kanpur, India, January 5–7, 2017, Volume 10119 of Lecture Notes in Computer Science, pp. 27–47. Springer (2017)

  7. Baaz, M., Leitsch, A., Lolic, A.: A sequent-calculus based formulation of the extended first epsilon theorem. In Artëmov, S.N., Nerode, A. (eds.) Proceedings of Logical Foundations of Computer Science, Volume 10703 of Lecture Notes in Computer Science, pp. 55–71. Springer (2018)

  8. Asser, G.: Theorie der logischen Auswahlfunktionen. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 3, 30–68 (1957)

    Article  MathSciNet  Google Scholar 

  9. Statman, R.: Lower bounds on Herbrand’s theorem. Proc. Am. Math. Soc. 75(1), 104–107 (1979)

    MathSciNet  Google Scholar 

  10. Orevkov, V.P.: Lower bounds for increasing complexity of derivations after cut elimination. J. Sov. Math. 20(4), 2337–2350 (1982)

    Article  Google Scholar 

  11. Arai, T.: Exact bounds on epsilon processes. Arch. Math. Log. 50(3–4), 445–458 (2011)

    Article  MathSciNet  Google Scholar 

  12. Baaz, M., Zach, R.: Epsilon theorems in intermediate logics. J. Symb. Log. 87, 682–720 (2022)

    Article  MathSciNet  Google Scholar 

  13. Moser, G.: Ackermann’s substitution method (remixed). Ann. Pure Appl. Log. 142(1–3), 1–18 (2006)

    Article  MathSciNet  Google Scholar 

  14. Mints, G.: Intuitionistic existential instantiation and epsilon symbol. In Wansing, H. (ed.) Dag Prawitz on Proofs and Meaning, Volume 7 of Outstanding Contributions to Logic, pp. 225–238. Springer (2015)

  15. Ackermann, W.: Zur Widerspruchsfreiheit der Zahlentheorie. Math. Ann. 117, 162–194 (1940)

    Article  MathSciNet  Google Scholar 

  16. Tait, W.W.: The substitution method. J. Symb. Log. 30, 175–192 (1965)

    Article  MathSciNet  Google Scholar 

  17. Avigad, J.: Update procedures and the \(1\)-consistency of arithmetic. Math. Log. Q. 48, 3–13 (2002)

    Article  MathSciNet  Google Scholar 

  18. DeVidi, D.: Intuitionistic epsilon- and tau-calculi. Math. Log. Q. 41, 523–546 (1995)

    Article  MathSciNet  Google Scholar 

  19. Maehara, S.: A general theory of completeness proofs. Ann. Jpn. Assoc. Philos. Sci. 3, 54–68 (1970)

    MathSciNet  Google Scholar 

  20. Shirai, K.: Intuitionistic predicate calculus with \(\varepsilon \)-symbol. Ann. Jpn. Assoc. Philos. Sci. 4(1), 49–67 (1971)

    MathSciNet  Google Scholar 

  21. Blass, A., Gurevich, Y.: The logic of choice. J. Symb. Log. 65, 1264–1310 (2000)

    Article  MathSciNet  Google Scholar 

  22. Abadi, M., Gonthier, G., Werner, B.: Choice in dynamic linking. In: Proceedings of the 7th FOSSACS, Volume 2987 of LNCS, pp. 12–26 (2004)

  23. Aguilera, J.P., Baaz, M.: Unsound inferences make proofs shorter. J. Symb. Log. 84(1), 102–122 (2019)

    Article  MathSciNet  Google Scholar 

  24. Maehara, S.: Equality axiom on Hilbert’s \(\varepsilon \)-symbol. J. Fac. Sci. Univ. Tokyo Sect. 1 7, 419–435 (1957)

    MathSciNet  Google Scholar 

  25. Maehara, S.: The predicate calculus with \(\varepsilon \)-symbol. J. Math. Soc. Jpn. 7, 323–344 (1955)

    Article  MathSciNet  Google Scholar 

  26. Yasuhara, M.: Cut elimination in \(\varepsilon \)-calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 28, 311–316 (1982)

    Article  MathSciNet  Google Scholar 

  27. Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987)

    Google Scholar 

  28. Baaz, M., Fermüller, C.G.: A note on the proof theoretic strength of a single application of the schema of identity. Submitted to the Dagsthul Seminar “Proof Theory in Computer Science” (2001)

  29. Krajíček, J.: Lower bounds to the size of constant-depth propositional proofs. J. Symb. Log. 59, 73–86 (1994)

    Article  MathSciNet  Google Scholar 

  30. Pudlak, P.: The length of proofs. In: Buss, S.R. (ed.) Handbook of Proof Theory, pp. 1–79. Elsevier, Amsterdam (1998)

    Google Scholar 

  31. Parikh, R.J.: Some results on the length of proofs. Trans. Am. Math. Soc. 177, 29–36 (1973)

    Article  MathSciNet  Google Scholar 

  32. Krajíćek, J., Pudlák, P.: The number of proof lines and the size of proofs in first-order logic. Arch. Math. Log. 27, 69–84 (1988)

    Article  MathSciNet  Google Scholar 

  33. Yukami, T.: Some results on speed-up. Ann. Jpn. Assoc. Philos. Sci. 6(4), 195–205 (1984)

    MathSciNet  Google Scholar 

  34. Buss, S.R.: Introduction to proof theory. In: Buss, S.R. (ed.) Handbook of Proof Theory, pp. 1–79. Elsevier, Amsterdam (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Miyamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, K., Moser, G. Herbrand complexity and the epsilon calculus with equality. Arch. Math. Logic 63, 89–118 (2024). https://doi.org/10.1007/s00153-023-00877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-023-00877-3

Keywords

Mathematics Subject Classification

Navigation