Skip to main content
Log in

Large-Scale Electric Currents in Coronal Heating Processes above Active Regions on the Sun

  • Published:
Astrophysics Aims and scope

This paper poses the problem of studying the role of large-scale electric currents propagating in the upper layers of the solar atmosphere in processes of coronal heating of the sun. For detecting and calculating the magnitude of the large-scale electric current, data on the distribution of the components of the magnetic field vector in the photosphere provided by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used. Photoheliograms of the sun’s corona in the ultraviolet radiation channels at 131, 171, 193, and 211 Å provided by the Atmospheric Imaging Assembly (AIA/SDO) were used to estimate the temperature in the corona above active regions (ARs). The dynamics of the large-scale current and the average temperature in 9 regions with different levels of flare activity of the corona above the ARs have been studied and charts of the spatial distribution of the temperature in the corona above the ARs have been constructed. The following results have been obtained: 1. Heating of the coronal matter owing to ohmic dissipation of large-scale electric currents proceeds in a stationary regime. 2. The increase in the average temperature in the corona above an AR during solar flares to \(<\overline{\mathrm{log}T }>=6.3-6.5\) (2.0-3.2 MK) is caused, not only by heating of coronal structures by large-scale electric currents, but also by other processes at coronal elevations. 3. For the NOAA 11899 and 12494 regions a reduction in the average temperature of the corona to \(<\overline{\mathrm{log}T }>=5.7\) (0.5-0.6 MK) was observed with a simultaneous drop in the values of the large-scale electric current to zero. These observations indicate that the mechanism for heating of the corona by ohmic dissipation of electric currents is shut off at zero values (within the computational errors) of the large-scale electric current. 4. In the NOAA regions 12192 and 12371, when constructing charts of the temperature distribution in the corona outside flare events, hot structures with temperatures ≥ 10 MK were observed outside the flare events which appear to mark the location of the channel of a large-scale electric current at coronal elevations. For the NOAA region 12192 this assumption is confirmed by a numerical simulation carried out in 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. de Jager, Structure and Dynamics of the Solar Atmosphere [Russian translation], Izdatel’stvo inostrannoi literatury, Moscow (1962).

    Google Scholar 

  2. J. R. Lemen, A. M. Title, D. J. Akin, et al., Solar Phys. 275, 17 (2012).

    Article  ADS  Google Scholar 

  3. W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin, Solar Phys. 275, 3 (2012).

    Article  ADS  Google Scholar 

  4. E. Antonucci, D. Alexander, J. L. Culhane, et al., in: The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission. Springer, Berlin, p. 331 (1998).

  5. P. L. Bornmann, in: The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission. Springer, Berlin, p. 301 (1998).

  6. J. V. Hollweg, Astrophys. J. 277, 392 (1984).

    Article  ADS  Google Scholar 

  7. J. Ionson, Astrophys. J. 276, 357 (1984).

    Article  ADS  Google Scholar 

  8. D. B. Melrose and G. A. Dulk, Astrophys. J. 282, 308 (1984).

    Article  ADS  Google Scholar 

  9. E. N. Parker, Astrophys. J. 330, 474 (1988).

    Article  ADS  Google Scholar 

  10. A. A. Galeev, R. Rosner, S. Serio, et al., Astrophys. J. 243, 301 (1981).

    Article  ADS  Google Scholar 

  11. D. C. Spicer, in: Mechanisms of Chromospheric and Coronal Heating. Springer-Verlag, Berlin, p. 547 (1991).

  12. P. F. Chen, Living Rev. Solar Phys. 8, 1 (2011).

    Article  ADS  Google Scholar 

  13. K. Shibata and T. Magara, Living Rev. Solar Phys. 8, 6 (2011).

    Article  ADS  Google Scholar 

  14. T. Wiegelmann and T. Sakurai, Living Rev. Solar Phys. 9, 5 (2012).

    Article  ADS  Google Scholar 

  15. T. Wiegelmann, J. K. Thalmann, and S. K. Solanki, Astron. Astrophys. Rev. 22, 78 (2014).

    Article  ADS  Google Scholar 

  16. M. C. M. Cheung and H. Isobe, Living Rev. Solar Phys. 11, 3 (2014).

    Article  ADS  Google Scholar 

  17. B. Schmieder, V. Archontis, and E. Pariat, Space Sci. Rev. 186, 227 (2014).

    Article  ADS  Google Scholar 

  18. N. E. Raouafi, S. Patsourakos, E. Pariat, et al., Space Sci. Rev. 201, 1 (2016).

    Article  ADS  Google Scholar 

  19. S. R. Sprangler, Astrophys. J. 670, 841 (2007).

    Article  ADS  Google Scholar 

  20. V. I. Abramenko and S. I. Gopasyuk, Izv. Krymsk. Astrofiz. Obs. 76, 147 (1987).

    ADS  Google Scholar 

  21. V. I. Abramenko, S. I. Gopasiuk, and M. B. Ogir, Solar Phys. 134, 287 (1991).

    Article  ADS  Google Scholar 

  22. Yu. A. Fursyak, A. S. Kutsenko, and V. I. Abramenko, Solar Phys. 295, 19 (2020).

    Article  ADS  Google Scholar 

  23. M. J. Aschwanden, J. S. Newmark, J.-P. Delabourdiniere, et al., Astrophys. J. 515, 842 (1999).

    Article  ADS  Google Scholar 

  24. M. J. Aschwanden, D. Alexander, H. Hurlburt, et al., Astrophys. J. 531, 1129 (2000).

    Article  ADS  Google Scholar 

  25. F. Reale and G. Peres, Astrophys. J. 528, L45 (2000).

    Article  ADS  Google Scholar 

  26. V. V. Zaitsev and K. Shibasaki, Astron. Rep. 49, 1009 (2005).

    Article  ADS  Google Scholar 

  27. T. G. Cowling, Magnetohydrodynamics, Interscience Publ., London (1957).

    MATH  Google Scholar 

  28. G. D. Holman, Astrophys. J. 293, 584 (1985).

    Article  ADS  Google Scholar 

  29. S. R. Sprangler, Nonlin. Processes Geophys. 16, 443 (2009).

    Article  ADS  Google Scholar 

  30. A. A. Solov’ev, Mon. Not. Roy. Astron. Soc. 515, 4981 (2022).

  31. A. A. Solov’ev, A. Riechokainen, V. V. Smirnova, et al., Geomagnetism and Aeronomy 62, 1021 (2022).

  32. P. H. Scherrer, J. Schou, R. I. Bush, at al., Solar Phys. 275, 207 (2012).

  33. M. G. Bobra, X. Sun, J. T. Hoeksema, et al., Solar Phys. 289, 3549 (2014).

    Article  ADS  Google Scholar 

  34. V. I. Abramenko, Astrophys. J. 629, 1141 (2005).

    Article  ADS  Google Scholar 

  35. T. Sakurai, Solar Phys. 76, 301 (1982).

    Article  ADS  Google Scholar 

  36. Yu. A. Fursyak, Geomagnetism and Aeronomy 58, 1129 (2018).

    Article  ADS  Google Scholar 

  37. A. A. Solov’ev and E. A. Kirichek, Mon. Not. Roy. Astron. Soc. 505, 4406 (2021).

  38. A. A. Solov’ev, Astron. zh. 88, 1111 (2011).

  39. X. Sun, J. T. Hoeksema, Y. Liu, et al., Astrophys. J. 748, 77 (2012).

    Article  ADS  Google Scholar 

  40. E. N. Parker, Cosmical Magnetic Fields. Part 1, Clarendon Press, Oxford (1979).

  41. E. N. Parker, Conversations on electric and magnetic field in the Cosmos, Princeton Univ. Press, Princeton (2007).

    Book  Google Scholar 

  42. X. Cheng, J. Zhang, S. H. Saar, et al., Astrophys. J. 761, 62 (2012).

    Article  ADS  Google Scholar 

  43. H. P. Summers, Mon. Not. Roy. Astron. Soc. 169, 663 (1974).

    Article  ADS  Google Scholar 

  44. N. R. Badnell, M. G. O’Mullane, H. P. Summers, et al., Astron. Astrophys. 406, 1151 (2003).

    Article  ADS  Google Scholar 

  45. P. G. Judge, Astrophys. J. 708, 1238 (2010).

    Article  ADS  Google Scholar 

  46. A. M. Thompson, Astron. Astrophys. 240, 209 (1990).

    ADS  Google Scholar 

  47. B. C. Monsignori-Fossi and M. Landini, Mem. Soc. Astron. It. 63, 767 (1992).

    ADS  Google Scholar 

  48. V. Kashyap and J. J. Drake, Astrophys. J. 503, 450 (1998).

    Article  ADS  Google Scholar 

  49. L. Golub, E. E. Deluca, A. Sette, et al., in: The Solar-B Mission and the Forefront of Solar Physics, ASP Conf. Ser. 325, 217 (2004).

  50. F. F. Goryaev, S. Parenti, A. M. Urnov, et al., Astron. Astrophys. 523, A44 (2010).

    Article  Google Scholar 

  51. M. J. Aschwanden and P. Boerner, Astrophys. J. 732, 81 (2011).

    Article  ADS  Google Scholar 

  52. I. G. Hannah and E. P. Kontar, Astron. Astrophys. 539, A146 (2012).

    Article  ADS  Google Scholar 

  53. V. V. Zaitsev and P. V. Kronshtadtov, Radiophys. Quantum Electron. 59, 169 (2016).

    Article  ADS  Google Scholar 

  54. C. Jiang, S. T. Wu, V. Yurchyshyn, et al., Astrophys. J. 828, 62 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu.A. Fursyak.

Additional information

Translated from Astrofizika, Vol. 66, No. 2, pp. 265-283 (May 2023).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fursyak, Y. Large-Scale Electric Currents in Coronal Heating Processes above Active Regions on the Sun. Astrophysics 66, 242–257 (2023). https://doi.org/10.1007/s10511-023-09786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-023-09786-y

Keywords

Navigation