Skip to main content
Log in

A novel heterozygous ZBTB18 missense mutation in a family with non-syndromic intellectual disability

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Intellectual disability (ID) is a common neurodevelopmental disorder characterized by significantly impaired adaptive behavior and cognitive capacity. High throughput sequencing approaches have revealed the genetic etiologies for 25–50% of ID patients, while inherited genetic mutations were detected in <5% cases. Here, we investigated the genetic cause for non-syndromic ID in a Han Chinese family. Whole genome sequencing was performed on identical twin sisters diagnosed with ID, their respective children, and their asymptomatic parents. Data was filtered for rare variants, and in silico prediction tools were used to establish pathogenic alleles. Candidate mutations were validated by Sanger sequencing. In silico modeling was used to evaluate the mutation’s effects on the protein encoded by a candidate coding gene. A novel heterozygous variant in the ZBTB18 gene c.1323C>G (p.His441Gln) was identified. This variant co-segregated with affected individuals in an autosomal dominant pattern and was not detected in asymptomatic family members. Molecular studies reveal that a p.His441Gln substitution disrupts zinc binding within the second zinc finger and disrupts the capacity for ZBTB18 to bind DNA. This is the first report of an inherited ZBTB18 mutation for ID. This study further validates WGS for the accurate molecular diagnosis of ID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data and images used in this article are available from the corresponding author on reasonable request.

Abbreviations

ID:

intellectual disability

CNVs:

copy number variants

NGS:

next-generation sequencing

WES:

whole-exome sequencing

WGS:

whole-genome sequencing

MR:

magnetic resonance

MRI:

magnetic resonance imaging

References

  1. Salvador-Carulla L, Reed GM, Vaez-Azizi LM, Cooper SA, Martinez-Leal R, Bertelli M, Adnams C, Cooray S, Deb S, Akoury-Dirani L et al (2011) Intellectual developmental disorders: towards a new name, definition and framework for “mental retardation/intellectual disability” in ICD-11. World Psychiatry 10(3):175–180

    Article  PubMed  Google Scholar 

  2. Moeschler JB, Shevell M (2014) Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics 134(3):e903–e918

    Article  PubMed  Google Scholar 

  3. Vissers LE, Gilissen C, Veltman JA (2016) Genetic studies in intellectual disability and related disorders. Nat Rev Genet 17(1):9–18

    Article  CAS  PubMed  Google Scholar 

  4. Vasudevan P, Suri M (2017) A clinical approach to developmental delay and intellectual disability. Clin Med 17(6):558–561

    Article  Google Scholar 

  5. Feldkamp ML, Carey JC, Byrne JLB, Krikov S, Botto LD (2017) Etiology and clinical presentation of birth defects: population based study. BMJ 357:j2249

    Article  PubMed  PubMed Central  Google Scholar 

  6. Srour M, Shevell M (2014) Genetics and the investigation of developmental delay/intellectual disability. Arch Dis Child 99(4):386–389

    Article  PubMed  Google Scholar 

  7. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, Albrecht B, Bartholdi D, Beygo J, Di Donato N et al (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380(9854):1674–1682

    Article  CAS  PubMed  Google Scholar 

  8. Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, Kwint M, Janssen IM, Hoischen A, Schenck A et al (2014) Genome sequencing identifies major causes of severe intellectual disability. Nature 511(7509):344–347

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava S, Cohen JS, Vernon H, Baranano K, McClellan R, Jamal L, Naidu S, Fatemi A (2014) Clinical whole exome sequencing in child neurology practice. Ann Neurol 76(4):473–483

    Article  PubMed  Google Scholar 

  10. Farwell Hagman KD, Shinde DN, Mroske C, Smith E, Radtke K, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Alcaraz WA et al (2016) Candidate-gene criteria for clinical reporting: diagnostic exome sequencing identifies altered candidate genes among 8% of patients with undiagnosed diseases. Genet Med 19(2):224–235

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bowling KM, Thompson ML, Amaral MD, Finnila CR, Hiatt SM, Engel KL, Cochran JN, Brothers KB, East KM, Gray DE et al (2017) Genomic diagnosis for children with intellectual disability and/or developmental delay. Genome Med 9(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  12. Popp B, Ekici AB, Thiel CT, Hoyer J, Wiesener A, Kraus C, Reis A, Zweier C (2017) Exome Pool-Seq in neurodevelopmental disorders. Eur J Hum Genet 25(12):1364–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lindstrand A, Eisfeldt J, Pettersson M, Carvalho CMB, Kvarnung M, Grigelioniene G, Anderlid BM, Bjerin O, Gustavsson P, Hammarsjo A et al (2019) From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. Genome Med 11(1):68

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thuresson AC, Soussi Zander C, Zhao JJ, Halvardson J, Maqbool K, Mansson E, Stenninger E, Holmlund U, Ohrner Y, Feuk L (2019) Whole genome sequencing of consanguineous families reveals novel pathogenic variants in intellectual disability. Clin Genet 95(3):436–439

    Article  CAS  PubMed  Google Scholar 

  15. Han JY, Lee IG (2020) Genetic tests by next-generation sequencing in children with developmental delay and/or intellectual disability. Clin Exp Pediatr 63(6):195–202

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Wang Y, Wang L, Chen WY, Sheng M (2020) The diagnostic yield of intellectual disability: combined whole genome low-coverage sequencing and medical exome sequencing. BMC Med Genet 13(1):70

    CAS  Google Scholar 

  17. Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, Keerthikumar S, Oortveld MA, Kleefstra T, Kramer JM et al (2016) Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet 98(1):149–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jarvela I, Maatta T, Acharya A, Leppala J, Jhangiani SN, Arvio M, Siren A, Kankuri-Tammilehto M, Kokkonen H, Palomaki M et al (2021) Exome sequencing reveals predominantly de novo variants in disorders with intellectual disability (ID) in the founder population of Finland. Hum Genet 140(7):1011–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohtaka-Maruyama C, Hirai S, Miwa A, Takahashi A, Okado H (2012) The 5’-flanking region of the RP58 coding sequence shows prominent promoter activity in multipolar cells in the subventricular zone during corticogenesis. Neuroscience 201:67–84

    Article  CAS  PubMed  Google Scholar 

  20. Aoki K, Meng G, Suzuki K, Takashi T, Kameoka Y, Nakahara K, Ishida R, Kasai M (1998) RP58 associates with condensed chromatin and mediates a sequence-specific transcriptional repression. J Biol Chem 273(41):26698–26704

    Article  CAS  PubMed  Google Scholar 

  21. Baubet V, Xiang C, Molczan A, Roccograndi L, Melamed S, Dahmane N (2012) Rp58 is essential for the growth and patterning of the cerebellum and for glutamatergic and GABAergic neuron development. Development 139(11):1903–1909

    Article  CAS  PubMed  Google Scholar 

  22. de Munnik SA, Garcia-Minaur S, Hoischen A, van Bon BW, Boycott KM, Schoots J, Hoefsloot LH, Knoers NV, Bongers EM, Brunner HG (2014) A de novo non-sense mutation in ZBTB18 in a patient with features of the 1q43q44 microdeletion syndrome. Eur J Hum Genet 22(6):844–846

    Article  PubMed  Google Scholar 

  23. Lopes F, Barbosa M, Ameur A, Soares G, de Sa J, Dias AI, Oliveira G, Cabral P, Temudo T, Calado E et al (2016) Identification of novel genetic causes of Rett syndrome-like phenotypes. J Med Genet 53(3):190–199

    Article  CAS  PubMed  Google Scholar 

  24. Cohen JS, Srivastava S, Farwell Hagman KD, Shinde DN, Huether R, Darcy D, Wallerstein R, Houge G, Berland S, Monaghan KG et al (2017) Further evidence that de novo missense and truncating variants in ZBTB18 cause intellectual disability with variable features. Clin Genet 91(5):697–707

    Article  CAS  PubMed  Google Scholar 

  25. Depienne C, Nava C, Keren B, Heide S, Rastetter A, Passemard S, Chantot-Bastaraud S, Moutard ML, Agrawal PB, VanNoy G et al (2017) Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU. Hum Genet 136(4):463–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ehmke N, Karge S, Buchmann J, Korinth D, Horn D, Reis O, Hassler F (2017) A de novo nonsense mutation in ZBTB18 plus a de novo 15q13.3 microdeletion in a 6-year-old female. Am J Med Genet A 173(5):1251–1256

    Article  CAS  PubMed  Google Scholar 

  27. van der Schoot V, de Munnik S, Venselaar H, Elting M, Mancini GMS, Ravenswaaij-Arts CMA, Anderlid BM, Brunner HG, Stevens SJC (2018) Toward clinical and molecular understanding of pathogenic variants in the ZBTB18 gene. Mol Genet Genomic Med 6(3):393–400

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Shi C, Huang Z, Zhang Y, Li S, Li Y, Ye J, Yu C, Li Z, Zhang X et al (2018) SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vasimuddin Md SM, Heng Li, Srinivas Aluru: Efficient architecture-aware acceleration of BWA-MEM for multicore systems. IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 2019:pp. 314-324.

  30. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F (2016) The Ensembl variant effect predictor. Genome Biol 17(1):122

    Article  PubMed  PubMed Central  Google Scholar 

  32. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74

    Article  PubMed  Google Scholar 

  33. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Chapter 7:Unit7 20

    PubMed  Google Scholar 

  35. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steinhaus R, Proft S, Schuelke M, Cooper DN, Schwarz JM, Seelow D (2021) MutationTaster2021. Nucleic Acids Res 49(W1):W446–W451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M (2019) CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47(D1):D886–D894

    Article  CAS  PubMed  Google Scholar 

  38. Hemming IA, Clement O, Gladwyn-Ng IE, Cullen HD, Ng HL, See HB, Ngo L, Ulgiati D, Pfleger KDG, Agostino M et al (2019) Disease-associated missense variants in ZBTB18 disrupt DNA binding and impair the development of neurons within the embryonic cerebral cortex. Hum Mutat 40(10):1841–1855

    Article  CAS  PubMed  Google Scholar 

  39. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21(6):577–581

    Article  CAS  PubMed  Google Scholar 

  40. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46(D1):D1062–D1067

    Article  CAS  PubMed  Google Scholar 

  41. Hirai S, Miwa A, Ohtaka-Maruyama C, Kasai M, Okabe S, Hata Y, Okado H (2012) RP58 controls neuron and astrocyte differentiation by downregulating the expression of Id1-4 genes in the developing cortex. EMBO J 31(5):1190–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiang C, Baubet V, Pal S, Holderbaum L, Tatard V, Jiang P, Davuluri RV, Dahmane N (2012) RP58/ZNF238 directly modulates proneurogenic gene levels and is required for neuronal differentiation and brain expansion. Cell Death Differ 19(4):692–702

    Article  CAS  PubMed  Google Scholar 

  43. Ohtaka-Maruyama C, Hirai S, Miwa A, Heng JI, Shitara H, Ishii R, Taya C, Kawano H, Kasai M, Nakajima K et al (2013) RP58 regulates the multipolar-bipolar transition of newborn neurons in the developing cerebral cortex. Cell Rep 3(2):458–471

    Article  CAS  PubMed  Google Scholar 

  44. Heng JI, Qu Z, Ohtaka-Maruyama C, Okado H, Kasai M, Castro D, Guillemot F, Tan SS (2015) The zinc finger transcription factor RP58 negatively regulates Rnd2 for the control of neuronal migration during cerebral cortical development. Cereb Cortex 25(3):806–816

    Article  PubMed  Google Scholar 

  45. Visich A, Zielenski J, Castanos C, Diez G, Grenoville M, Segal E, Barreiro C, Tsui LC, Chertkoff L (2002) Complete screening of the CFTR gene in Argentine cystic fibrosis patients. Clin Genet 61(3):207–213

    Article  CAS  PubMed  Google Scholar 

  46. Dork T, Dworniczak B, Aulehla-Scholz C, Wieczorek D, Bohm I, Mayerova A, Seydewitz HH, Nieschlag E, Meschede D, Horst J et al (1997) Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens. Hum Genet 100(3-4):365–377

    Article  CAS  PubMed  Google Scholar 

  47. Johnson B, Lowe GC, Futterer J, Lordkipanidze M, MacDonald D, Simpson MA, Sanchez-Guiu I, Drake S, Bem D, Leo V et al (2016) Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica 101(10):1170–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwon JA, Lee SY, Ahn EK, Seol SY, Kim MC, Kim SJ, Kim SI, Chu IS, Leem SH (2010) Short rare MUC6 minisatellites-5 alleles influence susceptibility to gastric carcinoma by regulating gene. Hum Mutat 31(8):942–949

    Article  CAS  PubMed  Google Scholar 

  49. Lim ET, Uddin M, De Rubeis S, Chan Y, Kamumbu AS, Zhang X, D'Gama AM, Kim SN, Hill RS, Goldberg AP et al (2017) Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat Neurosci 20(9):1217–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, Rippey C, Shahin H, Nimgaonkar VL, Go RC et al (2013) Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154(3):518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nagamani SC, Erez A, Bay C, Pettigrew A, Lalani SR, Herman K, Graham BH, Nowaczyk MJ, Proud M, Craigen WJ et al (2012) Delineation of a deletion region critical for corpus callosal abnormalities in chromosome 1q43-q44. Eur J Hum Genet 20(2):176–179

    Article  CAS  PubMed  Google Scholar 

  52. Ballif BC, Rosenfeld JA, Traylor R, Theisen A, Bader PI, Ladda RL, Sell SL, Steinraths M, Surti U, McGuire M et al (2012) High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44. Hum Genet 131(1):145–156

    Article  CAS  PubMed  Google Scholar 

  53. Perlman SJ, Kulkarni S, Manwaring L, Shinawi M (2013) Haploinsufficiency of ZNF238 is associated with corpus callosum abnormalities in 1q44 deletions. Am J Med Genet A 161A(4):711–716

    Article  PubMed  Google Scholar 

  54. JF MR, Clayton S, Fitzgerald TW, Kaplanis J (2017) Prigmore E: Prevalence and architecture of de novo mutations in developmental disorders. Nature 542(7642):433–438

    Article  Google Scholar 

  55. Evers C, Staufner C, Granzow M, Paramasivam N, Hinderhofer K, Kaufmann L, Fischer C, Thiel C, Opladen T, Kotzaeridou U et al (2017) Impact of clinical exomes in neurodevelopmental and neurometabolic disorders. Mol Genet Metab 121(4):297–307

    Article  CAS  PubMed  Google Scholar 

  56. Kosmicki JA, Samocha KE, Howrigan DP, Sanders SJ, Slowikowski K, Lek M, Karczewski KJ, Cutler DJ, Devlin B, Roeder K et al (2017) Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet 49(4):504–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trinh J, Kandaswamy KK, Werber M, Weiss MER, Oprea G, Kishore S, Lohmann K, Rolfs A (2019) Novel pathogenic variants and multiple molecular diagnoses in neurodevelopmental disorders. J Neurodev Disord 11(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vetrini F, McKee S, Rosenfeld JA, Suri M, Lewis AM, Nugent KM, Roeder E, Littlejohn RO, Holder S, Zhu W et al (2019) De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome. Genome Med 11(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  59. Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F, Wolman A, Guigo R, Iossifov I, Vasileva A, Lappalainen T (2018) Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. Nat Genet 50(9):1327–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sherry ST, Ward M, Sirotkin K (1999) dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res 9(8):677–679

    Article  CAS  PubMed  Google Scholar 

  61. Hemming IA, Blake S, Agostino M, Heng JI (2020) General population ZBTB18 missense variants influence DNA binding and transcriptional regulation. Hum Mutat 41(9):1629–1644

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to the family members for their participation in this study.

Funding

This study was supported by the National Key Research and Development Program of China (2022YFC2703700, 2022YFC2703702) and the Program for Changjiang Scholars and Innovative Research Team in University (ID: IRT0935).

Author information

Authors and Affiliations

Authors

Contributions

Nana Li and Ping Yu developed the study design. Nana Li, Hong Kang, Julian Heng, and Ping Yu conducted the experiment and drafted the manuscript. Zhen Liu, Ying Deng, Meixian Wang, and Lu Li assisted in analyzing the genomic data. Yanna Zou, Hong Qin, and Xiaoqiong Qiu participated in the clinical evaluation of the patients. Mark Agostino and Julian I-T Heng performed molecular modeling studies. Yanping Wang, Jun Zhu, and Julian I-T Heng participated in the critical review and revision of the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Julian I-T Heng or Ping Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Kang, H., Zou, Y. et al. A novel heterozygous ZBTB18 missense mutation in a family with non-syndromic intellectual disability. Neurogenetics 24, 251–262 (2023). https://doi.org/10.1007/s10048-023-00727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-023-00727-7

Keywords

Navigation