Skip to main content
Log in

Waterlogging influences the physiology index and antioxidant enzyme activity in Cucurbita maxima and Cucurbita moschata

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Waterlogging is one of the major environmental challenges that can adversely impact squash growth, development, and productivity. Nevertheless, studies on the physiological changes of squash to waterlogging stress are scarce. Previously, we reported that the Cucurbita moschata (Cmo) Early Price (Ep) cultivar showed higher chlorophyll content (CC) and spectral reflectance compared to the Cucurbita maxima (Cma) OK-101 (Ok) cultivar after waterlogging. In the present work, we further examined more physiological parameters in eight cultivars of Cmo and Cma, and studied whether these non-destructive indices could efficiently identify various waterlogging-tolerant genotypes and were consistent with visual evaluations. Moreover, we investigated the effects of waterlogging on the antioxidant system of cucurbit species, and evaluated dynamic changes occurring in these plants during varying waterlog periods by determining physiological characteristics. The activity of ascorbate peroxidase (APX) and superoxide dismutase (SOD) showed a significant increase in Ep plant leaves and roots after 72 h and 6 h of waterlogging, respectively, compared to Ok plants. In addition, Ep exhibited a higher tolerance to waterlogging than Ok in terms of enhanced root length, values in CC, spectral reflectance, and APX and SOD activity, plus decreased levels of electrolyte leakage, 2,2‑diphenyl‑1‑picrylhydrazyl free radical scavenging, and hydrogen peroxide levels. This study provides a comprehensive understanding of the physiological variations in response to waterlogging stress and can potentially be used to breed cucurbit species with waterlogging tolerance for a wetter future climate.

題目: 淹水逆境對中國南瓜(Cucurbita maxima)與西洋南瓜(Cucurbita moschata)的生理指標和抗氧化酵素活性之影響 摘要: 淹水逆境是南瓜生長與發育過程中主要的環境挑戰之一,其對南瓜的生長、發育和產量有負面的影響。然而,關於南瓜在淹水逆境下的生理反應的研究甚少。我們之前曾發表一項研究,係利用葉綠素含量與反射光譜讀值評估中國南瓜(Cucurbita moschata)與西洋南瓜(Cucurbita maxima)對淹水逆境的耐受性。在本研究中,我們進一步利用更多的生理指標,針對八種中國南瓜與西洋南瓜進行耐淹水能力測試,並探討這些非破壞性指標是否與外表型性狀吻合,以及是否能有效鑑別不同耐淹水能力的基因型。此外,我們還測試淹水逆境對南瓜抗氧化系統的影響,並且通過測定生理特性,評估在不同淹水逆境期間,南瓜所發生的動態變化。結果顯示,在淹水逆境處理後,中國南瓜「吉祥」 (Early Price)具有比西洋南瓜「Ok」 (OK-101)更長的根、更高的葉綠素含量與反射光譜讀值、較高的抗壞血酸過氧化酶與超氧化物歧化酶活性、較高的自由基清除率,並有較低的離子滲漏率與過氧化氫含量。這些結果顯示,中國南瓜「吉祥」對淹水逆境表現出較高的耐受性。本研究的成果不僅揭示南瓜在淹水逆境下的生理變化,未來還可以用於加速南瓜耐淹水品種的培育。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that supports the findings of this study are contained within the article and available from the corresponding author upon reasonable request.

References

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci 6:868

    Article  PubMed  PubMed Central  Google Scholar 

  • Anee TI, Nahar K, Rahman A, Mahmud JA, Bhuiyan TF, Alam MU, Fujita M, Hasanuzzaman M (2019) Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants 8:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aydinli G, Kurtar ES, Mennan S (2019) Screening of Cucurbita maxima and Cucurbita moschata genotypes for resistance against Meloidogyne arenaria, M. incognita, M. javanica, and M. luci. J Nematol 51:e2019–e2057

    Article  PubMed  PubMed Central  Google Scholar 

  • Azab ES, Alshallash KS, Alqahtani MM, Safhi FA, ALshamrani SM, Ali MAM, El-Mageed TAA, El-Taher AM (2022) Physiological, anatomical, and agronomic responses of cucurbita pepo to exogenously sprayed potassium silicate at different concentrations under varying water regimes. Agronomy 12:2155

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3:138–147

    Article  Google Scholar 

  • Barickman TC, Simpson CR, Sams CE (2019) Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants 8:160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas J, Kalra N (2018) Effect of waterlogging and submergence on crop physiology and growth of different crops and its remedies: Bangladesh perspectives. Saudi J Eng Technol 3:315–329

    Google Scholar 

  • Bonneville M, Fyles JW (2006) Assessing variations in SPAD-502 chlorophyll meter measurements and their relationships with nutrient content of trembling aspen foliage. Commun Soil Sci Plant Anal 37:525–539

    Article  CAS  Google Scholar 

  • Chiang CM, Chen CC, Chen SP, Lin KH, Chen LR, Su YH, Yen HC (2017) Overexpression of the ascorbate peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic Arabidopsis. J Plant Res 130:373–386

    Article  CAS  PubMed  Google Scholar 

  • Chugh V, Kaur N, Gupta AK (2011) Role of antioxidant and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against waterlogging. Indian J Biochem Biophys 48:346–352

    CAS  PubMed  Google Scholar 

  • Czernicka M, Keska K, Planchon S, Kapusta M, Popielarska-Konieczna M, Wesołowski W, Szklarczyk M, Renaut J (2022) Proteomic studies of roots in hypoxia-sensitive and–tolerant tomato accessions reveal candidate proteins associated with stress priming. Cells 11:500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da-Silva CJ, do Amarante L (2020) Time-course biochemical analyses of soybean plants during waterlogging and reoxygenation. Environ Exp Bot 180:11

    Article  Google Scholar 

  • Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X (2023) Climate change challenges, plant science solutions. Plant Cell 35:24–66

    Article  PubMed  Google Scholar 

  • Eysholdt-Derzso E, Sauter M (2017) Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling. Plant Physiol 175:412–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farias GD, Bremm C, Bredemeier C, de Lima MJ, Alves LA, Tiecher T, Martins AP, Fioravanço GP, da Silva GP, de Faccio Carvalho PC (2023) Normalized difference vegetation index (NDVI) for soybean biomass and nutrient uptake estimation in response to production systems and fertilization strategies. Front Sustain Food Syst 6:959681

    Article  Google Scholar 

  • Habib-Ur-Rahman M, Ahmad A, Raza A, Hasnain MU, Alharby HF, Alzahrani YM, Bamagoos AA, Hakeem KR, Ahmad S, Nasim W, Ali S, Mansour F, El Sabagh A (2022) Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front Plant Sci 13:925548

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Mahmud JA, Nahar K, Anee TI, Inafuku M, Oku H, Fujita M (2017) Responses, adaptation, and ROS metabolism in plants exposed to waterlogging stress. In: Khan M, Khan N (eds) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture for growing plants without soil. Calif Agri Exp Stat Circ 347:32

    Google Scholar 

  • Hosen M, Rafii MY, Mazlan N, Jusoh M, Oladosu Y, Chowdhury MFN, Muhammad I, Khan MMH (2021) Pumpkin (Cucurbita spp.): a crop to mitigate food and nutritional challenges. Horticulturae 7:352

    Article  Google Scholar 

  • Jogawat A (2019) Osmolytes and their role in abiotic stress tolerance in plants. Molecular plant abiotic stress: biology and biotechnology 91–104

  • Kazminska K, Sobieszek K, Targo´ nska-Karasek M, Korzeniewska A, Niemirowicz-Szczytt K, Bartoszewski G (2017) Genetic diversity assessment of a winter squash and pumpkin (Cucurbita maxima Duchesne) germplasm collection based on genomic cucurbita-conserved SSR markers. Sci Hortic 219:37–44

    Article  Google Scholar 

  • Kołton A, Kęska K, Czernicka M (2020) Selection of tomato and cucumber accessions for waterlogging sensitivity through morpho-physiological assessment at an early vegetative stage. Agronomy 10:1490

    Article  Google Scholar 

  • Lin KH, Weng CC, Lo HF, Chen JT (2004) Study of the root antioxidative system of tomatoes and eggplant under waterlogged conditions. Plant Sci 167:355–365

    Article  CAS  Google Scholar 

  • Lin KH, Chiou YK, Hwang SY, Chen LFO, Lo HF (2008) Calcium chloride enhances the antioxidative system of sweet potato (Ipomoea batatas) under flooding stress. Ann Appl Biol 152:157–168

    Article  CAS  Google Scholar 

  • Lin KH, Kuo WS, Chiang CM, Hsiung TC, Chiang MC, Lo HF (2013) Study of sponge gourd ascorbate peroxidase and winter squash superoxide dismutase under respective flooding and chilling stresses. Scientia Hort 162:333–340

    Article  CAS  Google Scholar 

  • Lin HH, Lin KH, Huang MY, Su YR (2020) Use of non-destructive measurements to identify cucurbit species (Cucurbita maxima and Cucurbita moschata) tolerant to waterlogged conditions. Plants 9:1226

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin HH, Lin KH, Yang MJ, Hoang HC, Wang HJ, Huang HX, Huang MY (2022) Physiological responses and antioxidant properties of coriander plants (Coriandrum sativum L.) under different light intensities of red and blue lights. Sci Rep 12:21139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Jiang Y, Yang X, Deng X, Dang J, Wang Z, Yusop MR, Abdullah S (2022) Characteristics of interspecific hybridization and inbred progeny of pumpkin (Cucurbita moschata Duch.) and winter squash (Cucurbita maxima Duch.). Horticulturae 8:596

    Article  Google Scholar 

  • Lu A, Yu M, Fang Z, Xiao B, Guo L, Wang W, Li J, Wang S, Zhang Y (2019) Preparation of the controlled acid hydrolysates from pumpkin polysaccharides and their antioxidant and antidiabetic evaluation. Int J Biol Macromol 121:261–269

    Article  CAS  PubMed  Google Scholar 

  • Men X, Choi SI, Han X, Kwon HY, Jang GW, Choi YE, Park SM, Lee OH (2020) Physicochemical, nutritional and functional properties of Cucurbita moschata. Food Sci Biotechnol 30:171–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Muhammad I, Shalmani A, Ali M, Yang QH, Ahmad H, Li FB (2021) Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci 11:615942

    Article  PubMed  PubMed Central  Google Scholar 

  • Naik ML, Prasad VM, Laxmi R (2015) A study on character association and path analysis in pumpkin (Cucurbita moschata Duch. ex Poir.). Int J Adv Res 3:1030–1034

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Olorunwa OJ, Adhikari B, Shi A, Barickman TC (2022a) Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage. Plant Sci 315:111136

    Article  CAS  PubMed  Google Scholar 

  • Olorunwa OJ, Adhikari B, Brazel S, Popescu SC, Popescu GV, Barickman TC (2022b) Short waterlogging events differently affect morphology and photosynthesis of two cucumber (Cucumis sativus L.) cultivars. Front Plant Sci 13:896244

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan J, Sharif R, Xu X, Chen X (2021) Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci 11:2319

    Article  Google Scholar 

  • Patel PK, Singh AK, Yadav D, Hemantaranjan A, Tripathi N (2014) Flooding: abiotic constraint limiting vegetable productivity. Adv Plants Agric Res 1:96–103

    Google Scholar 

  • Peng YQ, Zhu J, Li WJ, Gao W, Shen RY, Meng LJ (2020) Effects of grafting on root growth, anaerobic respiration enzyme activity and aerenchyma of bitter melon under waterlogging stress. Sci Hortic 261:108977

    Article  CAS  Google Scholar 

  • Peñuelas J, Marino G, Llusia J, Morfopoulos C, Farré-Armengol G, Filella I (2013) Photochemical reflectance index as an indirect estimator of foliar isoprenoid emissions at the ecosystem level. Nat Commun 4:2604

    Article  PubMed  Google Scholar 

  • Qi X, Li Q, Ma X, Qian C, Wang H, Ren N, Shen C, Huang S, Xu X, Xu Q, Chen X (2019) Waterlogging induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Plant Cell Environ 42:1458–1470

    Article  CAS  PubMed  Google Scholar 

  • Que F, Wang G, Feng K, Xu ZS, Wang F, Xiong AS (2018) Hypoxia enhances lignification and affects the anatomical structure in hydroponic cultivation of carrot taproot. Plant Cell Rep 37:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Rao L, Li S, Cui X (2021) Leaf morphology and chlorophyll fluorescence characteristics of mulberry seedlings under waterlogging stress. Sci Rep 11:13379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safavi-Rizi V, Herde M, Stöhr C (2020) RNA-Seq reveals novel genes and pathways associated with hypoxiaduration and tolerance in tomato Root. Sci Rep 10:1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Chinnusamy V, Meena RC (2009) Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea. Biol Plant 53:493–504

    Article  CAS  Google Scholar 

  • Salehi B, Sharifi-Rad J, Capanoglu E, Adrar N, Catalkaya G, Shaheen S, Jaffer M, Giri L, Suyal R, Jugran AK, Calina D, Oana-Docea A, Kamiloglu S, Kregiel D, Antolak H, Pawlikowska E, Sen S, Acharya K, Bashiry M, Selamoglu Z, Martorell M, Sharopov F, Martins N, Namiesnik J, Cho WC (2019) Cucurbita plants: from farm to industry. Appl Sci 9:3387

    Article  CAS  Google Scholar 

  • Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup KH, Hill RD, Holdsworth MJ, Ismail AM, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih MC, Sorrell BK, Striker GG, Van-Dongen JT, Whelan J, Xiao S, Visser EJW, Voesenek LACJ (2017) Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol 214:1403–1407

    Article  PubMed  Google Scholar 

  • Shabala S, Shabala L, Barcelo J, Poschenrieder C (2014) Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ 37:2216–2233

    Article  CAS  PubMed  Google Scholar 

  • Simova-Stoilova L, Demirevska K, Kingston-Smith A, Feller U (2012) Involvement of the leaf antioxidant system in the response to soil flooding in two Trifolium genotypes differing in their tolerance to waterlogging. Plant Sci 183:43–49

    Article  CAS  PubMed  Google Scholar 

  • Skutnik M, Rychter AM (2009) Differential response of antioxidant systems in leaves and roots of barley subjected to anoxia and post-anoxia. J Plant Physiol 166:926–937

    Article  CAS  PubMed  Google Scholar 

  • Talarczyk A, Krzymowska M, Borucki W, Hennig J (2002) Effect of yeast CTA1 gene expression on response of tobacco plants to tobacco mosaic virus infection. Plant Physiol 129:1032–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teoh EY, Teo CH, Baharum NA, Pua TL, Tan BC (2022) Waterlogging stress induces antioxidant defense responses, aerenchyma formation and alters metabolisms of banana plants. Plants 11:2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie RJ, Zheng L, Jiao Y, Huang X (2021) Understanding physiological and molecular mechanisms of citrus rootstock seedlings in response to root zone hypoxia by RNA-Seq. Environ Exp Bot 192:14

    Article  Google Scholar 

  • Yin D, Chen S, Chen F, Guan Z, Fang W (2009) Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot 67:87–93

    Article  CAS  Google Scholar 

  • Yordanova RY, Christov KN, Popova LP (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:93–101

    Article  CAS  Google Scholar 

  • Zhang D, Liu C, Yang Y, Wu Q, Li Y (2018) Plant root hair growth in response to hormones. Not Bot Horti Agrobot 47:278–281

    Article  Google Scholar 

  • Zhang RD, Zhou YF, Yue ZX, Chen XF, Cao X, Xu XX, Xing YF, Jiang B, Ai XY, Huang RD (2019) Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica 57:1076–1083

    Article  CAS  Google Scholar 

  • Zheng J, Fang C, Ru L, Sun N, Liu Y, Huang Y, Wang Y, Zhu Z, He Y (2021) Role of glutathione-ascorbate cycle and photosynthetic electronic transfer in alternative oxidase-manipulated waterlogging tolerance in watermelon seedlings. Horticulturae 7:130

    Article  Google Scholar 

  • Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, Shu K (2020) Plant waterlogging/ flooding stress responses: from seed germination to maturation. Plant Physiol Biochem 148:228–236

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Hu C, Zeng L, Cheng Y, Xu M, Zhang XA (2014) Comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during plant ontogeny. PLoS ONE 9:e89731

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology in Taiwan, grant number MOST-111-2313-B-005-054.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HHL and KHL; methodology, SPC; validation, HHL; investigation, YRS and YHT; resources, HHL and KHL; data curation, HHL and SPC; writing-original draft preparation, HHL, KHL and SPC; writing-review and editing, HHL, KHL and SPC; supervision, HHL; funding acquisition, HHL and KHL. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hsin-Hung Lin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, and they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Sung Kyeom Kim.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 626 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, KH., Chen, SP., Su, YR. et al. Waterlogging influences the physiology index and antioxidant enzyme activity in Cucurbita maxima and Cucurbita moschata. Hortic. Environ. Biotechnol. 65, 43–55 (2024). https://doi.org/10.1007/s13580-023-00552-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-023-00552-9

Keywords

Navigation