Skip to main content
Log in

Abstract

The present work deals with the global solvability as well as absolute continuity of the law of the solution to stochastic generalized Burgers–Huxley (SGBH) equation driven by multiplicative space-time white noise in a bounded interval of \({\mathbb {R}}\). We first prove the existence of a unique local mild solution to SGBH equation with the help of a truncation argument and contraction mapping principle. Then global solvability results are obtained by using uniform bounds of the local mild solution and stopping time arguments. Later, we establish a comparison theorem for the solution of SGBH equation having higher order nonlinearities and it plays a crucial role in this work. Then, we discuss the weak differentiability of the solution to SGBH equation in the Malliavin calculus sense. Finally, we obtain the absolute continuity of the law of the solution with respect to the Lebesgue measure on \({\mathbb {R}}\), and the existence of density with the aid of comparison theorem and weak differentiability of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space. De Gruyter, Berlin, New York (2010)

    MATH  Google Scholar 

  2. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. NoDEA Nonlinear Differ. Equ. Appl. 1, 389–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Da Prato, G., Gatarek, D.: Stochastic Burgers equation with correlated noise. Stoch. Stoch. Rep. 52, 29–41 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  5. Debussche, A., Fournier, N.: Existence of densities for stable-like driven SDE’s with Hölder continuous coefficients. J. Funct. Anal. 264, 1757–1778 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Debussche, A., Romito, M.: Existence of densities for the 3D Navier–Stokes equations driven by Gaussian noise. Probab. Theory Relat. Fields 158, 575–596 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donati-Martin, C., Pardoux, E.: White noise driven SPDEs with reflection. Probab. Theory Relat. Fields 95, 1–24 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ervin, V.J., Macías-Díaz, J.E., Ruiz-Ramíreza, J.: A positive and bounded finite element approximation of the generalized Burgers–Huxley equation. J. Math. Anal. Appl. 424, 1143–1160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferrario, B., Zanella, M.: Absolute continuity of the law for the two dimensional stochastic Navier–Stokes equations. Stoch. Process. Appl. 129, 1568–1604 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garsia, A., Rodemich, E., Rumsey, H.: A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geiss, C., Manthey, R.: Comparison theorems for stochastic differential equations in finite and infinite dimensions. Stoch. Process. Appl. 53, 23–35 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gyöngy, I.: Existence and uniqueness results for semilinear stochastic partial differential equations. Stoch. Process. Appl. 73, 271–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gyöngy, I., Nualart, D.: On the stochastic Burgers equation in the real line. Ann. Probab. 27, 782–802 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105, 143–158 (1996)

    Article  MATH  Google Scholar 

  15. Khan, A., Mohan, M.T., Ruiz-Baier, R.: Conforming, nonconforming and DG methods for the stationary generalized Burgers–Huxley equation. J. Sci. Comput. 88, 1–26 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kotelenz, P.: Comparison methods for a class of function valued stochastic partial differential equations. Probab. Theory Relat. Fields 93, 1–19 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar, A., Mohan, M.T.: Large deviation principle for occupation measures of stochastic generalized Burgers–Huxley equation. J. Theor. Probab. (2022). https://doi.org/10.1007/s10959-022-01180-2

    Article  MATH  Google Scholar 

  18. León, J.A., Nualart, D., Pettersson, R.: The stochastic Burgers equation: finite moments and smoothness of the density. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3, 363–385 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Manthey, R., Stiewe, C.: Existence and uniqueness of solutions to Volterra’s population equation with diffusion and noise. Stoch. Stoch. Rep. 41, 135–161 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marinelli, C., Nualart, E., Quer-Sardanyons, L.: Existence and regularity of the density for solutions to semilinear dissipative parabolic SPDEs. Potential Anal. 39, 287–311 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marinelli, C., Quer-Sardanyons, L.: Absolute continuity of solutions to reaction-diffusion equations with multiplicative noise. Potential Anal. 57, 243–261 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morien, P.L.: On the density for the solution of a Burgers-type SPDE. Ann. Inst. Henri Poincaré 35, 459–482 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mohan, M.T.: Stochastic Burgers–Huxley equation: global solvability, large deviations and ergodicity. Submitted (2021). arXiv:2010.09023

  24. Mohan, M.T.: Mild solution for stochastic generalized Burgers–Huxley equation. J. Theor. Probab. 35, 1511–1536 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mohan, M.T., Khan, A.: On the generalized Burgers-Huxley equation: existence, uniqueness, regularity, global attractors and numerical studies. Discrete Contin. Dyn. Syst. Ser. B 26, 3943–3988 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Nualart, D.: The Malliavin Calculus and Related Topics. Springer Verlag, New York (1995)

    Book  MATH  Google Scholar 

  27. Nualart, D., Nualart, E.: Introduction to Malliavin Calculus, Institute of Mathematical Statistics Textbooks, 9. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  28. Olivera, C., Tudor, C.: Absolute continuity of the solution to the stochastic Burgers equation. Chaos Solitons Fractals 153, 6 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pardoux, E., Zhang, T.S.: Absolute continuity of the law of the solution of a parabolic SPDE. J. Funct. Anal. 112, 447–458 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  31. Romito, M.: A simple method for the existence of a density for stochastic evolutions with rough coefficients. Electron. J. Probab. 23, 43 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sanz-Solé, M., Süss, A.: Absolute continuity for SPDEs with irregular fundamental solution. Electron. Commun. Probab. 20, 1–11 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Satsuma, J.: Exact solutions of Burgers’ equation with reaction terms. In: Topics in Soliton Theory and Exact Solvable Nonlinear Equations, pp. 255–262. (1987)

  34. Simon, J.: Compact sets in the space \(L^p(O, T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1986)

    Article  Google Scholar 

  35. Sritharan, S.S., Xu, M.: Malliavin calculus for stochastic point vortex and Lagrangian models. In: Seminar on Stochastic Analysis, Random Fields and Applications VII, Progress in Probability, vol. 67, pp. 223–233. Birkhäuser/Springer, Basel (2013)

  36. Walsh, J.: An introduction to stochastic partial differential equations. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint Flour XIV. Lecture Notes in Mathematics, vol. 1180, pp. 265–437. Springer, Berlin, Heidelberg, New York (1986)

  37. Wang, X.-Y.: Nerve propagation and wall in liquid crystals. Phys. Lett. A 112, 402–406 (1985)

    Article  Google Scholar 

  38. Wang, X.Y., Zhu, Z.S., Lu, Y.K.: Solitary wave solutions of the generalized Burgers–Huxley equation. J. Phys. A Math. Gen. 23, 271–274 (1990)

    Article  MATH  Google Scholar 

  39. Yaroslavtsev, I.: Burkholder–Davis–Gundy inequalities in UMD Banach spaces. Commun. Math. Phys. 379, 417–459 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yefimova, O.Y., Kudryashov, N.: Exact solutions of the Burgers–Huxley equation. J. Appl. Math. Mech. 3, 413–420 (2004)

    Article  MathSciNet  Google Scholar 

  41. Zaidi, N.L., Nualart, D.: Burgers equation driven by space-time white noise: absolute continuity of solution. Stoch. Stoch. Rep. 66, 273–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Ministry of Education, Government of India - MHRD for financial assistance. M. T. Mohan would like to thank the Department of Science and Technology (DST), India for Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award (IFA17-MA110). The authors sincerely would like to thank the reviewers for their valuable comments and suggestions, which helped us to improve the manuscript significantly, especially Proposition 3.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manil T. Mohan.

Ethics declarations

Conflict of interest

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mohan, M.T. Absolute continuity of the solution to stochastic generalized Burgers–Huxley equation. Stoch PDE: Anal Comp (2023). https://doi.org/10.1007/s40072-023-00308-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40072-023-00308-7

Keywords

Mathematics Subject Classification

Navigation