Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 2, 2023

Pathogenesis underlying hexanucleotide repeat expansions in C9orf72 gene in amyotrophic lateral sclerosis

  • Zhao Zhong Chong EMAIL logo , Daniel L. Menkes and Nizar Souayah EMAIL logo

Abstract

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder. Mutations in C9orf72 and the resulting hexanucleotide repeat (GGGGCC) expansion (HRE) has been identified as a major cause of familial ALS, accounting for about 40 % of familial and 6 % of sporadic cases of ALS in Western patients. The pathological outcomes of HRE expansion in ALS have been recognized as the results of two mechanisms that include both the toxic gain-of-function and loss-of-function of C9ORF72. The gain of toxicity results from RNA and dipeptide repeats (DPRs). The HRE can be bidirectionally transcribed into RNA foci, which can bind to and disrupt RNA splicing, transport, and translation. The DPRs that include poly-glycine-alanine, poly-glycine-proline, poly-glycine- arginine, poly-proline-alanine, and poly-proline-arginine can induce toxicity by direct binding and sequestrating other proteins to interfere rRNA synthesis, ribosome biogenesis, translation, and nucleocytoplasmic transport. The C9ORF72 functions through binding to its partners-Smith-Magenis chromosome regions 8 (SMCR8) and WD repeat-containing protein (WDR41). Loss of C9ORF72 function results in impairment of autophagy, deregulation of autoimmunity, increased stress, and disruption of nucleocytoplasmic transport. Further insight into the mechanism in C9ORF72 HRE pathogenesis will facilitate identifying novel and effective therapeutic targets for ALS.


Corresponding authors: Zhao Zhong Chong, Department of Neurology, Rutgers University, New Jersey Medical School, 185 S. Orange Ave, Newark, NJ 07103, USA, E-mail: ; and Nizar Souayah, Department of Neurology, Rutgers University, New Jersey Medical School, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA, E-mail:

Funding source: RAM Capital II

Award Identifier / Grant number: N/A

Acknowledgments

This work was supported in part by RAM Capital II, start-up fund for Dr. Nizar Souayah from the Department of Neurology and Neurosciences at New Jersey Medical School.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  3. Research funding: None declared.

References

Akcimen, F., Lopez, E.R., Landers, J.E., Nath, A., Chio, A., Chia, R., and Traynor, B.J. (2023). Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat. Rev. Genet. 24: 1–17, https://doi.org/10.1038/s41576-023-00592-y.Search in Google Scholar PubMed PubMed Central

Altman, T., Ionescu, A., Ibraheem, A., Priesmann, D., Gradus-Pery, T., Farberov, L., Alexandra, G., Shelestovich, N., Dafinca, R., Shomron, N., et al.. (2021). Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. Nat. Commun. 12: 6914, https://doi.org/10.1038/s41467-021-27221-8.Search in Google Scholar PubMed PubMed Central

Amick, J., Roczniak-Ferguson, A., and Ferguson, S.M. (2016). C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol. Biol. Cell 27: 3040–3051, https://doi.org/10.1091/mbc.e16-01-0003.Search in Google Scholar PubMed PubMed Central

Amick, J., Tharkeshwar, A.K., Talaia, G., and Ferguson, S.M. (2020). PQLC2 recruits the C9orf72 complex to lysosomes in response to cationic amino acid starvation. J. Cell Biol. 219: e201906076, https://doi.org/10.1083/jcb.201906076.Search in Google Scholar PubMed PubMed Central

Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., Mann, D., Tsuchiya, K., Yoshida, M., Hashizume, Y., et al.. (2006). TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351: 602–611, https://doi.org/10.1016/j.bbrc.2006.10.093.Search in Google Scholar PubMed

Ayala, Y.M., Misteli, T., and Baralle, F.E. (2008). TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc. Natl. Acad. Sci. U. S. A. 105: 3785–3789, https://doi.org/10.1073/pnas.0800546105.Search in Google Scholar PubMed PubMed Central

Balendra, R. and Isaacs, A.M. (2018). C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. 14: 544–558, https://doi.org/10.1038/s41582-018-0047-2.Search in Google Scholar PubMed PubMed Central

Barker, H.V., Niblock, M., Lee, Y.B., Shaw, C.E., and Gallo, J.M. (2017). RNA misprocessing in C9orf72-linked neurodegeneration. Front. Cell. Neurosci. 11: 195, https://doi.org/10.3389/fncel.2017.00195.Search in Google Scholar PubMed PubMed Central

Beckers, J., Tharkeshwar, A.K., and Van Damme, P. (2021). C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 17: 3306–3322, https://doi.org/10.1080/15548627.2021.1872189.Search in Google Scholar PubMed PubMed Central

Bensimon, G., Lacomblez, L., and Meininger, V. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N. Engl. J. Med. 330: 585–591, https://doi.org/10.1056/nejm199403033300901.Search in Google Scholar

Bhattacharya, A. and Eissa, N.T. (2013). Autophagy and autoimmunity crosstalks. Front. Immunol. 4: 88, https://doi.org/10.3389/fimmu.2013.00088.Search in Google Scholar PubMed PubMed Central

Braems, E., Bercier, V., Van Schoor, E., Heeren, K., Beckers, J., Fumagalli, L., Dedeene, L., Moisse, M., Geudens, I., Hersmus, N., et al.. (2022). HNRNPK alleviates RNA toxicity by counteracting DNA damage in C9orf72 ALS. Acta Neuropathol. 144: 465–488, https://doi.org/10.1007/s00401-022-02471-y.Search in Google Scholar PubMed PubMed Central

Braems, E., Swinnen, B., and Van Den Bosch, L. (2020). C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD? Acta Neuropathol. 140: 625–643, https://doi.org/10.1007/s00401-020-02214-x.Search in Google Scholar PubMed PubMed Central

Buratti, E., Brindisi, A., Giombi, M., Tisminetzky, S., Ayala, Y.M., and Baralle, F.E. (2005). TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J. Biol. Chem. 280: 37572–37584, https://doi.org/10.1074/jbc.m505557200.Search in Google Scholar PubMed

Burberry, A., Suzuki, N., Wang, J.Y., Moccia, R., Mordes, D.A., Stewart, M.H., Suzuki-Uematsu, S., Ghosh, S., Singh, A., Merkle, F.T., et al.. (2016). Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci. Transl. Med. 8: 347ra393, https://doi.org/10.1126/scitranslmed.aaf6038.Search in Google Scholar PubMed PubMed Central

Burk, K. and Pasterkamp, R.J. (2019). Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol. 137: 859–877, https://doi.org/10.1007/s00401-019-01964-7.Search in Google Scholar PubMed PubMed Central

Celona, B., Dollen, J.V., Vatsavayai, S.C., Kashima, R., Johnson, J.R., Tang, A.A., Hata, A., Miller, B.L., Huang, E.J., Krogan, N.J., et al.. (2017). Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106. Elife 6: e19032, https://doi.org/10.7554/elife.19032.Search in Google Scholar

Chew, J., Gendron, T.F., Prudencio, M., Sasaguri, H., Zhang, Y.J., Castanedes-Casey, M., Lee, C.W., Jansen-West, K., Kurti, A., Murray, M.E., et al.. (2015). Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348: 1151–1154, https://doi.org/10.1126/science.aaa9344.Search in Google Scholar PubMed PubMed Central

Chien, H.M., Lee, C.C., and Huang, J.J. (2021). The different faces of the TDP-43 low-complexity domain: the Formation of liquid droplets and amyloid fibrils. Int. J. Mol. Sci. 22: 8213, https://doi.org/10.3390/ijms22158213.Search in Google Scholar PubMed PubMed Central

Chio, A., Borghero, G., Restagno, G., Mora, G., Drepper, C., Traynor, B.J., Sendtner, M., Brunetti, M., Ossola, I., Calvo, A., et al.. (2012). Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. Brain 135: 784–793, https://doi.org/10.1093/brain/awr366.Search in Google Scholar PubMed PubMed Central

Chitiprolu, M., Jagow, C., Tremblay, V., Bondy-Chorney, E., Paris, G., Savard, A., Palidwor, G., Barry, F.A., Zinman, L., Keith, J., et al.. (2018). A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat. Commun. 9: 2794, https://doi.org/10.1038/s41467-018-05273-7.Search in Google Scholar PubMed PubMed Central

Cicardi, M.E., Hallgren, J.H., Mawrie, D., Krishnamurthy, K., Markandaiah, S.S., Nelson, A.T., Kankate, V., Anderson, E.N., Pasinelli, P., Pandey, U.B., et al.. (2023). C9orf72 poly(PR) mediated neurodegeneration is associated with nucleolar stress. bioRxiv, https://doi.org/10.1101/2023.02.16.528809.Search in Google Scholar PubMed PubMed Central

Clarke, P.R. (2008). Signaling to nuclear transport. Dev. Cell 14: 316–318, https://doi.org/10.1016/j.devcel.2008.02.005.Search in Google Scholar PubMed

Conlon, E.G., Lu, L., Sharma, A., Yamazaki, T., Tang, T., Shneider, N.A., and Manley, J.L. (2016). The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. eLife 5: e17820, https://doi.org/10.7554/elife.17820.Search in Google Scholar PubMed PubMed Central

Cook, C.N., Wu, Y., Odeh, H.M., Gendron, T.F., Jansen-West, K., Del Rosso, G., Yue, M., Jiang, P., Gomes, E., Tong, J., et al.. (2020). C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy. Sci. Transl. Med. 12: eabb3774, https://doi.org/10.1126/scitranslmed.abb3774.Search in Google Scholar PubMed PubMed Central

Corcia, P., Ingre, C., Blasco, H., Press, R., Praline, J., Antar, C., Veyrat-Durebex, C., Guettard, Y.O., Camu, W., Andersen, P.M., et al.. (2012). Homozygous SMN2 deletion is a protective factor in the Swedish ALS population. Eur. J. Hum. Genet. 20: 588–591, https://doi.org/10.1038/ejhg.2011.255.Search in Google Scholar PubMed PubMed Central

Dafinca, R., Scaber, J., Ababneh, N., Lalic, T., Weir, G., Christian, H., Vowles, J., Douglas, A.G., Fletcher-Jones, A., Browne, C., et al.. (2016). C9orf72 hexanucleotide expansions are associated with altered endoplasmic reticulum calcium homeostasis and stress granule formation in induced pluripotent stem cell-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal dementia. Stem Cells 34: 2063–2078, https://doi.org/10.1002/stem.2388.Search in Google Scholar PubMed PubMed Central

DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al.. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72: 245–256, https://doi.org/10.1016/j.neuron.2011.09.011.Search in Google Scholar PubMed PubMed Central

Dong, W., Ma, Y., Guan, F., Zhang, X., Chen, W., Zhang, L., and Zhang, L. (2021). Ablation of C9orf72 together with excitotoxicity induces ALS in rats. FEBS J. 288: 1712–1723, https://doi.org/10.1111/febs.15501.Search in Google Scholar PubMed

Donnelly, C.J., Zhang, P.W., Pham, J.T., Haeusler, A.R., Mistry, N.A., Vidensky, S., Daley, E.L., Poth, E.M., Hoover, B., Fines, D.M., et al.. (2013). RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80: 415–428, https://doi.org/10.1016/j.neuron.2013.10.055.Search in Google Scholar

Dou, J., Bakulski, K., Guo, K., Hur, J., Zhao, L., Saez-Atienzar, S., Stark, A., Chia, R., Garcia-Redondo, A., Rojas-Garcia, R., et al.. (2023). Cumulative genetic score and C9orf72 repeat status independently contribute to amyotrophic lateral sclerosis risk in 2 case-control studies. Neurol. Genet. 9: e200079, https://doi.org/10.1212/nxg.0000000000200079.Search in Google Scholar

Fader, C.M., Sanchez, D., Furlan, M., and Colombo, M.I. (2008). Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 9: 230–250, https://doi.org/10.1111/j.1600-0854.2007.00677.x.Search in Google Scholar PubMed

Farg, M.A., Sundaramoorthy, V., Sultana, J.M., Yang, S., Atkinson, R.A., Levina, V., Halloran, M.A., Gleeson, P.A., Blair, I.P., Soo, K.Y., et al.. (2014). C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum. Mol. Genet. 23: 3579–3595, https://doi.org/10.1093/hmg/ddu068.Search in Google Scholar PubMed PubMed Central

Fratta, P., Poulter, M., Lashley, T., Rohrer, J.D., Polke, J.M., Beck, J., Ryan, N., Hensman, D., Mizielinska, S., Waite, A.J., et al.. (2013). Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathol. 126: 401–409, https://doi.org/10.1007/s00401-013-1147-0.Search in Google Scholar PubMed PubMed Central

Freibaum, B.D. and Taylor, J.P. (2017). The role of dipeptide repeats in C9ORF72-related ALS-FTD. Front. Mol. Neurosci. 10: 35, https://doi.org/10.3389/fnmol.2017.00035.Search in Google Scholar PubMed PubMed Central

Gao, J., Mewborne, Q.T., Girdhar, A., Sheth, U., Coyne, A.N., Punathil, R., Kang, B.G., Dasovich, M., Veire, A., DeJesus Hernandez, M., et al.. (2022). Poly(ADP-ribose) promotes toxicity of C9ORF72 arginine-rich dipeptide repeat proteins. Sci. Transl. Med. 14: eabq3215, https://doi.org/10.1126/scitranslmed.abq3215.Search in Google Scholar PubMed PubMed Central

Gendron, T.F., Bieniek, K.F., Zhang, Y.J., Jansen-West, K., Ash, P.E., Caulfield, T., Daughrity, L., Dunmore, J.H., Castanedes-Casey, M., Chew, J., et al.. (2013). Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol. 126: 829–844, https://doi.org/10.1007/s00401-013-1192-8.Search in Google Scholar PubMed PubMed Central

Gijselinck, I., Van Langenhove, T., van der Zee, J., Sleegers, K., Philtjens, S., Kleinberger, G., Janssens, J., Bettens, K., Van Cauwenberghe, C., Pereson, S., et al.. (2012). A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 11: 54–65, https://doi.org/10.1016/s1474-4422(11)70261-7.Search in Google Scholar PubMed

Gijselinck, I., Van Mossevelde, S., van der Zee, J., Sieben, A., Engelborghs, S., De Bleecker, J., Ivanoiu, A., Deryck, O., Edbauer, D., Zhang, M., et al.. (2016). The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol. Psychiatry 21: 1112–1124, https://doi.org/10.1038/mp.2015.159.Search in Google Scholar PubMed PubMed Central

Glasmacher, S.A., Thomas, H.S., Stirland, L., Wilkinson, T., Lumsden, J., Langlands, G., Waddell, B., Holloway, G., Thompson, G., and Pal, S. (2019). Incidental findings identified on head MRI for investigation of cognitive impairment: a retrospective review. Dement. Geriatr. Cogn. Disord. 48: 123–130, https://doi.org/10.1159/000503956.Search in Google Scholar PubMed

Haeusler, A.R., Donnelly, C.J., Periz, G., Simko, E.A., Shaw, P.G., Kim, M.S., Maragakis, N.J., Troncoso, J.C., Pandey, A., Sattler, R., et al.. (2014). C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507: 195–200, https://doi.org/10.1038/nature13124.Search in Google Scholar PubMed PubMed Central

Harley, H.G., Rundle, S.A., MacMillan, J.C., Myring, J., Brook, J.D., Crow, S., Reardon, W., Fenton, I., Shaw, D.J., and Harper, P.S. (1993). Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am. J. Hum. Genet. 52: 1164–1174.Search in Google Scholar

Hautbergue, G.M. (2017). RNA nuclear export: from neurological disorders to cancer. Adv. Exp. Med. Biol. 1007: 89–109, https://doi.org/10.1007/978-3-319-60733-7_6.Search in Google Scholar PubMed

Hautbergue, G.M., Castelli, L.M., Ferraiuolo, L., Sanchez-Martinez, A., Cooper-Knock, J., Higginbottom, A., Lin, Y.H., Bauer, C.S., Dodd, J.E., Myszczynska, M.A., et al.. (2017). SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat. Commun. 8: 16063, https://doi.org/10.1038/ncomms16063.Search in Google Scholar PubMed PubMed Central

Heutink, P., Jansen, I.E., and Lynes, E.M. (2014). C9orf72; abnormal RNA expression is the key. Exp. Neurol. 262 Pt B: 102–110, https://doi.org/10.1016/j.expneurol.2014.05.020.Search in Google Scholar PubMed

Iyer, S., Subramanian, V., and Acharya, K.R. (2018). C9orf72, a protein associated with amyotrophic lateral sclerosis (ALS) is a guanine nucleotide exchange factor. PeerJ 6: e5815, https://doi.org/10.7717/peerj.5815.Search in Google Scholar PubMed PubMed Central

Jafarinia, H., Van der Giessen, E., and Onck, P.R. (2022). Molecular basis of C9orf72 poly-PR interference with the beta-karyopherin family of nuclear transport receptors. Sci. Rep. 12: 21324, https://doi.org/10.1038/s41598-022-25732-y.Search in Google Scholar PubMed PubMed Central

Jäger, S., Bucci, C., Tanida, I., Ueno, T., Kominami, E., Saftig, P., and Eskelinen, E.L. (2004). Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci. 117: 4837–4848, https://doi.org/10.1242/jcs.01370.Search in Google Scholar PubMed

Jensen, B.K., Schuldi, M.H., McAvoy, K., Russell, K.A., Boehringer, A., Curran, B.M., Krishnamurthy, K., Wen, X., Westergard, T., Ma, L., et al.. (2020). Synaptic dysfunction induced by glycine-alanine dipeptides in C9orf72-ALS/FTD is rescued by SV2 replenishment. EMBO Mol. Med. 12: e10722, https://doi.org/10.15252/emmm.201910722.Search in Google Scholar PubMed PubMed Central

Jimenez-Villegas, J., Kirby, J., Mata, A., Cadenas, S., Turner, M.R., Malaspina, A., Shaw, P.J., Cuadrado, A., and Rojo, A.I. (2022). Dipeptide repeat pathology in C9orf72-ALS is associated with redox, mitochondrial and NRF2 pathway imbalance. Antioxidants 11: 1897, https://doi.org/10.3390/antiox11101897.Search in Google Scholar PubMed PubMed Central

Jo, Y., Lee, J., Lee, S.Y., Kwon, I., and Cho, H. (2022). Poly-dipeptides produced from C9orf72 hexanucleotide repeats cause selective motor neuron hyperexcitability in ALS. Proc. Natl. Acad. Sci. U. S. A. 119: e2113813119, https://doi.org/10.1073/pnas.2113813119.Search in Google Scholar PubMed PubMed Central

Johnson, J.O., Pioro, E.P., Boehringer, A., Chia, R., Feit, H., Renton, A.E., Pliner, H.A., Abramzon, Y., Marangi, G., Winborn, B.J., et al.. (2014). Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci. 17: 664–666, https://doi.org/10.1038/nn.3688.Search in Google Scholar PubMed PubMed Central

Kaivola, K., Salmi, S.J., Jansson, L., Launes, J., Hokkanen, L., Niemi, A.K., Majamaa, K., Lahti, J., Eriksson, J.G., Strandberg, T., et al.. (2020). Carriership of two copies of C9orf72 hexanucleotide repeat intermediate-length alleles is a risk factor for ALS in the Finnish population. Acta Neuropathol. Commun. 8: 187, https://doi.org/10.1186/s40478-020-01059-5.Search in Google Scholar PubMed PubMed Central

Khosravi, B., Hartmann, H., May, S., Mohl, C., Ederle, H., Michaelsen, M., Schludi, M.H., Dormann, D., and Edbauer, D. (2017). Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD. Hum. Mol. Genet. 26: 790–800, https://doi.org/10.1093/hmg/ddw432.Search in Google Scholar PubMed PubMed Central

Kim, J. and Kim, E. (2016). Rag GTPase in amino acid signaling. Amino Acids 48: 915–928, https://doi.org/10.1007/s00726-016-2171-x.Search in Google Scholar PubMed

Kumar, V., Hasan, G.M., and Hassan, M.I. (2017). Unraveling the role of RNA mediated toxicity of C9orf72 repeats in C9-FTD/ALS. Front. Neurosci. 11: 711, https://doi.org/10.3389/fnins.2017.00711.Search in Google Scholar PubMed PubMed Central

LaClair, K.D., Zhou, Q., Michaelsen, M., Wefers, B., Brill, M.S., Janjic, A., Rathkolb, B., Farny, D., Cygan, M., de Angelis, M.H., et al.. (2020). Congenic expression of poly-GA but not poly-PR in mice triggers selective neuron loss and interferon responses found in C9orf72 ALS. Acta Neuropathol. 140: 121–142, https://doi.org/10.1007/s00401-020-02176-0.Search in Google Scholar PubMed PubMed Central

Lall, D., Lorenzini, I., Mota, T.A., Bell, S., Mahan, T.E., Ulrich, J.D., Davtyan, H., Rexach, J.E., Muhammad, A., Shelest, O., et al.. (2021). C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron 109: 2275–2291.e2278, https://doi.org/10.1016/j.neuron.2021.05.020.Search in Google Scholar PubMed PubMed Central

Leblond, C.S., Gan-Or, Z., Spiegelman, D., Laurent, S.B., Szuto, A., Hodgkinson, A., Dionne-Laporte, A., Provencher, P., de Carvalho, M., Orru, S., et al.. (2016). Replication study of MATR3 in familial and sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 37: 209.e217–209.e221, https://doi.org/10.1016/j.neurobiolaging.2015.09.013.Search in Google Scholar PubMed

Lee, Y.B., Chen, H.J., Peres, J.N., Gomez-Deza, J., Attig, J., Stalekar, M., Troakes, C., Nishimura, A.L., Scotter, E.L., Vance, C., et al.. (2013). Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 5: 1178–1186, https://doi.org/10.1016/j.celrep.2013.10.049.Search in Google Scholar PubMed PubMed Central

Levine, T.P., Daniels, R.D., Gatta, A.T., Wong, L.H., and Hayes, M.J. (2013). The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics 29: 499–503, https://doi.org/10.1093/bioinformatics/bts725.Search in Google Scholar PubMed PubMed Central

Lin, K.P., Tsai, P.C., Liao, Y.C., Chen, W.T., Tsai, C.P., Soong, B.W., and Lee, Y.C. (2015). Mutational analysis of MATR3 in Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol. Aging 36: 2005.e2001–2005.e2004, https://doi.org/10.1016/j.neurobiolaging.2015.02.008.Search in Google Scholar PubMed

Liu, Y., Huang, Z., Liu, H., Ji, Z., Arora, A., Cai, D., Wang, H., Liu, M., Simko, E.A.J., Zhang, Y., et al.. (2023). DNA-initiated epigenetic cascades driven by C9orf72 hexanucleotide repeat. Neuron 111: 1205–1221.e1209, https://doi.org/10.1016/j.neuron.2023.03.035.Search in Google Scholar PubMed PubMed Central

Longatti, A., Lamb, C.A., Razi, M., Yoshimura, S., Barr, F.A., and Tooze, S.A. (2012). TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J. Cell Biol. 197: 659–675, https://doi.org/10.1083/jcb.201111079.Search in Google Scholar PubMed PubMed Central

Majounie, E., Renton, A.E., Mok, K., Dopper, E.G., Waite, A., Rollinson, S., Chio, A., Restagno, G., Nicolaou, N., Simon-Sanchez, J., et al.. (2012). Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 11: 323–330, https://doi.org/10.1016/s1474-4422(12)70043-1.Search in Google Scholar PubMed PubMed Central

Marangi, G., Lattante, S., Doronzio, P.N., Conte, A., Tasca, G., Monforte, M., Patanella, A.K., Bisogni, G., Meleo, E., La Spada, S., et al.. (2017). Matrin 3 variants are frequent in Italian ALS patients. Neurobiol. Aging 49: 218.e211–e218.e217, https://doi.org/10.1016/j.neurobiolaging.2016.09.023.Search in Google Scholar PubMed

May, S., Hornburg, D., Schludi, M.H., Arzberger, T., Rentzsch, K., Schwenk, B.M., Grasser, F.A., Mori, K., Kremmer, E., Banzhaf-Strathmann, J., et al.. (2014). C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol. 128: 485–503, https://doi.org/10.1007/s00401-014-1329-4.Search in Google Scholar PubMed PubMed Central

McCann, E.P., Henden, L., Fifita, J.A., Zhang, K.Y., Grima, N., Bauer, D.C., Chan Moi Fat, S., Twine, N.A., Pamphlett, R., Kiernan, M.C., et al.. (2021). Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J. Med. Genet. 58: 87–95, https://doi.org/10.1136/jmedgenet-2020-106866.Search in Google Scholar PubMed

McEachin, Z.T., Parameswaran, J., Raj, N., Bassell, G.J., and Jiang, J. (2020). RNA-mediated toxicity in C9orf72 ALS and FTD. Neurobiol. Dis. 145: 105055, https://doi.org/10.1016/j.nbd.2020.105055.Search in Google Scholar PubMed PubMed Central

McGoldrick, P., Lau, A., You, Z., Durcan, T.M., and Robertson, J. (2023). Loss of C9orf72 perturbs the Ran-GTPase gradient and nucleocytoplasmic transport, generating compositionally diverse Importin beta-1 granules. Cell Rep. 42: 112134, https://doi.org/10.1016/j.celrep.2023.112134.Search in Google Scholar PubMed

Narain, P., Padhi, A.K., Dave, U., Mishra, D., Bhatia, R., Vivekanandan, P., and Gomes, J. (2019). Identification and characterization of novel and rare susceptible variants in Indian amyotrophic lateral sclerosis patients. Neurogenetics 20: 197–208, https://doi.org/10.1007/s10048-019-00584-3.Search in Google Scholar PubMed

Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M., et al.. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130–133, https://doi.org/10.1126/science.1134108.Search in Google Scholar PubMed

Nishikura, K. (2010). Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79: 321–349, https://doi.org/10.1146/annurev-biochem-060208-105251.Search in Google Scholar PubMed PubMed Central

Nonaka, T., Masuda-Suzukake, M., Hosokawa, M., Shimozawa, A., Hirai, S., Okado, H., and Hasegawa, M. (2018). C9ORF72 dipeptide repeat poly-GA inclusions promote intracellular aggregation of phosphorylated TDP-43. Hum. Mol. Genet. 27: 2658–2670, https://doi.org/10.1093/hmg/ddy174.Search in Google Scholar PubMed

O’Rourke, J.G., Bogdanik, L., Yanez, A., Lall, D., Wolf, A.J., Muhammad, A.K., Ho, R., Carmona, S., Vit, J.P., Zarrow, J., et al.. (2016). C9orf72 is required for proper macrophage and microglial function in mice. Science 351: 1324–1329, https://doi.org/10.1126/science.aaf1064.Search in Google Scholar PubMed PubMed Central

Origone, P., Verdiani, S., Bandettini Di Poggio, M., Zuccarino, R., Vignolo, M., Caponnetto, C., and Mandich, P. (2015). A novel Arg147Trp MATR3 missense mutation in a slowly progressive ALS Italian patient. Amyotrophic Lateral Scler. Frontotemporal Degener. 16: 530–531, https://doi.org/10.3109/21678421.2015.1058397.Search in Google Scholar PubMed

Pang, W. and Hu, F. (2021). Cellular and physiological functions of C9ORF72 and implications for ALS/FTD. J. Neurochem. 157: 334–350, https://doi.org/10.1111/jnc.15255.Search in Google Scholar PubMed PubMed Central

Ramesh, N., Daley, E.L., Gleixner, A.M., Mann, J.R., Kour, S., Mawrie, D., Anderson, E.N., Kofler, J., Donnelly, C.J., Kiskinis, E., et al.. (2020). RNA dependent suppression of C9orf72 ALS/FTD associated neurodegeneration by Matrin-3. Acta Neuropathol. Commun. 8: 177, https://doi.org/10.1186/s40478-020-01060-y.Search in Google Scholar PubMed PubMed Central

Renton, A.E., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al.. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72: 257–268, https://doi.org/10.1016/j.neuron.2011.09.010.Search in Google Scholar PubMed PubMed Central

Riemslagh, F.W., Verhagen, R.F.M., van der Toorn, E.C., Smits, D.J., Quint, W.H., van der Linde, H.C., van Ham, T.J., and Willemsen, R. (2021). Reduction of oxidative stress suppresses poly-GR-mediated toxicity in zebrafish embryos. Dis. Models Mech. 14: dmm049092, https://doi.org/10.1242/dmm.049092.Search in Google Scholar PubMed PubMed Central

Roggenbuck, J. (2021). C9orf72 and the care of the patient with ALS or FTD: progress and recommendations after 10 years. Neurol. Genet. 7: e542, https://doi.org/10.1212/nxg.0000000000000542.Search in Google Scholar

Rothstein, J.D. (2017). Edaravone: a new drug approved for ALS. Cell 171: 725, https://doi.org/10.1016/j.cell.2017.10.011.Search in Google Scholar PubMed

Rutherford, N.J., Heckman, M.G., Dejesus-Hernandez, M., Baker, M.C., Soto-Ortolaza, A.I., Rayaprolu, S., Stewart, H., Finger, E., Volkening, K., Seeley, W.W., et al.. (2012). Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype. Neurobiol. Aging 33: 2950.e2955–2950.e2957, https://doi.org/10.1016/j.neurobiolaging.2012.07.005.Search in Google Scholar PubMed PubMed Central

Saberi, S., Stauffer, J.E., Jiang, J., Garcia, S.D., Taylor, A.E., Schulte, D., Ohkubo, T., Schloffman, C.L., Maldonado, M., Baughn, M., et al.. (2018). Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol. 135: 459–474, https://doi.org/10.1007/s00401-017-1793-8.Search in Google Scholar PubMed PubMed Central

Sahoo, P.K., Lee, S.J., Jaiswal, P.B., Alber, S., Kar, A.N., Miller-Randolph, S., Taylor, E.E., Smith, T., Singh, B., Ho, T.S., et al.. (2018). Axonal G3BP1 stress granule protein limits axonal mRNA translation and nerve regeneration. Nat. Commun. 9: 3358, https://doi.org/10.1038/s41467-018-05647-x.Search in Google Scholar PubMed PubMed Central

Sakkas, L.I., Bogdanos, D.P., and andKousvelari, E.E. (2017). Loss of C9orf72 function leads to autoimmunity. Ann. Transl. Med. 5: 60, https://doi.org/10.21037/atm.2017.01.33.Search in Google Scholar PubMed PubMed Central

Scotter, E.L., Vance, C., Nishimura, A.L., Lee, Y.B., Chen, H.J., Urwin, H., Sardone, V., Mitchell, J.C., Rogelj, B., Rubinsztein, D.C., et al.. (2014). Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species. J. Cell Sci. 127: 1263–1278, https://doi.org/10.1242/jcs.140087.Search in Google Scholar PubMed PubMed Central

Sellier, C., Campanari, M.L., Julie Corbier, C., Gaucherot, A., Kolb-Cheynel, I., Oulad-Abdelghani, M., Ruffenach, F., Page, A., Ciura, S., Kabashi, E., et al.. (2016). Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 35: 1276–1297, https://doi.org/10.15252/embj.201593350.Search in Google Scholar PubMed PubMed Central

Selvaraj, B.T., Livesey, M.R., Zhao, C., Gregory, J.M., James, O.T., Cleary, E.M., Chouhan, A.K., Gane, A.B., Perkins, E.M., Dando, O., et al.. (2018). C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca(2+)-permeable AMPA receptor-mediated excitotoxicity. Nat. Commun. 9: 347, https://doi.org/10.1038/s41467-017-02729-0.Search in Google Scholar PubMed PubMed Central

Shu, X., Wei, C., Tu, W.Y., Zhong, K., Qi, S., Wang, A., Bai, L., Zhang, S.X., Luo, B., Xu, Z.Z., et al.. (2023). Negative regulation of TREM2-mediated C9orf72 poly-GA clearance by the NLRP3 inflammasome. Cell Rep. 42: 112133, https://doi.org/10.1016/j.celrep.2023.112133.Search in Google Scholar PubMed

Simon-Sanchez, J., Dopper, E.G., Cohn-Hokke, P.E., Hukema, R.K., Nicolaou, N., Seelaar, H., de Graaf, J.R., de Koning, I., van Schoor, N.M., Deeg, D.J., et al.. (2012). The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain 135: 723–735, https://doi.org/10.1093/brain/awr353.Search in Google Scholar PubMed

Simone, R., Balendra, R., Moens, T.G., Preza, E., Wilson, K.M., Heslegrave, A., Woodling, N.S., Niccoli, T., Gilbert-Jaramillo, J., Abdelkarim, S., et al.. (2018). G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo. EMBO Mol. Med. 10: 22–31, https://doi.org/10.15252/emmm.201707850.Search in Google Scholar PubMed PubMed Central

Sivadasan, R., Hornburg, D., Drepper, C., Frank, N., Jablonka, S., Hansel, A., Lojewski, X., Sterneckert, J., Hermann, A., Shaw, P.J., et al.. (2016). C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nat. Neurosci. 19: 1610–1618, https://doi.org/10.1038/nn.4407.Search in Google Scholar PubMed

Smeyers, J., Banchi, E.G., and Latouche, M. (2021). C9ORF72: what it is, what it does, and why it matters. Front. Cell. Neurosci. 15: 661447, https://doi.org/10.3389/fncel.2021.661447.Search in Google Scholar PubMed PubMed Central

Sprunger, M.L., Lee, K., Sohn, B.S., and Jackrel, M.E. (2022). Molecular determinants and modifiers of Matrin-3 toxicity, condensate dynamics, and droplet morphology. iScience 25: 103900, https://doi.org/10.1016/j.isci.2022.103900.Search in Google Scholar PubMed PubMed Central

Su, M.Y., Fromm, S.A., Zoncu, R., and Hurley, J.H. (2020). Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD. Nature 585: 251–255, https://doi.org/10.1038/s41586-020-2633-x.Search in Google Scholar PubMed PubMed Central

Sullivan, P.M., Zhou, X., Robins, A.M., Paushter, D.H., Kim, D., Smolka, M.B., and Hu, F. (2016). The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol. Commun. 4: 51, https://doi.org/10.1186/s40478-016-0324-5.Search in Google Scholar PubMed PubMed Central

Sun, Y., Eshov, A., Zhou, J., Isiktas, A.U., and Guo, J.U. (2020). C9orf72 arginine-rich dipeptide repeats inhibit UPF1-mediated RNA decay via translational repression. Nat. Commun. 11: 3354, https://doi.org/10.1038/s41467-020-17129-0.Search in Google Scholar PubMed PubMed Central

Suzuki, H. and Matsuoka, M. (2021). Proline-arginine poly-dipeptide encoded by the C9orf72 repeat expansion inhibits adenosine deaminase acting on RNA. J. Neurochem. 158: 753–765, https://doi.org/10.1111/jnc.15445.Search in Google Scholar PubMed

Szatmari, Z., Kis, V., Lippai, M., Hegedus, K., Farago, T., Lorincz, P., Tanaka, T., Juhasz, G., and Sass, M. (2014). Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization. Mol. Biol. Cell 25: 522–531, https://doi.org/10.1091/mbc.e13-10-0574.Search in Google Scholar PubMed PubMed Central

Tada, M., Doi, H., Koyano, S., Kubota, S., Fukai, R., Hashiguchi, S., Hayashi, N., Kawamoto, Y., Kunii, M., Tanaka, K., et al.. (2018). Matrin 3 is a component of neuronal cytoplasmic inclusions of motor neurons in sporadic amyotrophic lateral sclerosis. Am. J. Pathol. 188: 507–514, https://doi.org/10.1016/j.ajpath.2017.10.007.Search in Google Scholar PubMed

Tang, D., Sheng, J., Xu, L., Yan, C., and Qi, S. (2020). The C9orf72-SMCR8-WDR41 complex is a GAP for small GTPases. Autophagy 16: 1542–1543, https://doi.org/10.1080/15548627.2020.1779473.Search in Google Scholar PubMed PubMed Central

Tg, S., Chase, K.J., Liu, F., Lloyd, T.E., Rossoll, W., and Zhang, K. (2023). c-Jun N-terminal kinase promotes stress granule assembly and neurodegeneration in C9orf72-mediated ALS and FTD. J. Neurosci 43: 3186–3197, https://doi.org/10.1523/JNEUROSCI.1799-22.2023.Search in Google Scholar PubMed PubMed Central

Ugolino, J., Ji, Y.J., Conchina, K., Chu, J., Nirujogi, R.S., Pandey, A., Brady, N.R., Hamacher-Brady, A., and Wang, J. (2016). Loss of C9orf72 enhances autophagic activity via deregulated mTOR and TFEB signaling. PLoS Genet. 12: e1006443, https://doi.org/10.1371/journal.pgen.1006443.Search in Google Scholar PubMed PubMed Central

Ulland, T.K. and Colonna, M. (2018). TREM2 - a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14: 667–675, https://doi.org/10.1038/s41582-018-0072-1.Search in Google Scholar PubMed

van Blitterswijk, M., Baker, M.C., Bieniek, K.F., Knopman, D.S., Josephs, K.A., Boeve, B., Caselli, R., Wszolek, Z.K., Petersen, R., Graff-Radford, N.R., et al.. (2013). Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Amyotrophic Lateral Scler. Frontotemporal Degener. 14: 463–469, https://doi.org/10.3109/21678421.2013.787630.Search in Google Scholar PubMed PubMed Central

Wang, H.Y., Wang, I.F., Bose, J., and Shen, C.K. (2004). Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83: 130–139, https://doi.org/10.1016/s0888-7543(03)00214-3.Search in Google Scholar PubMed

Wang, M., Wang, H., Tao, Z., Xia, Q., Hao, Z., Prehn, J.H.M., Zhen, X., Wang, G., and Ying, Z. (2020). C9orf72 associates with inactive Rag GTPases and regulates mTORC1-mediated autophagosomal and lysosomal biogenesis. Aging Cell 19: e13126, https://doi.org/10.1111/acel.13126.Search in Google Scholar PubMed PubMed Central

Webster, C.P., Smith, E.F., Bauer, C.S., Moller, A., Hautbergue, G.M., Ferraiuolo, L., Myszczynska, M.A., Higginbottom, A., Walsh, M.J., Whitworth, A.J., et al.. (2016). The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 35: 1656–1676, https://doi.org/10.15252/embj.201694401.Search in Google Scholar PubMed PubMed Central

Webster, C.P., Smith, E.F., Grierson, A.J., and De Vos, K.J. (2018). C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy. Small GTPases 9: 399–408, https://doi.org/10.1080/21541248.2016.1240495.Search in Google Scholar PubMed PubMed Central

Wiesenfarth, M., Gunther, K., Muller, K., Witzel, S., Weiland, U., Mayer, K., Herrmann, C., Brenner, D., Schuster, J., Freischmidt, A., et al.. (2023). Clinical and genetic features of amyotrophic lateral sclerosis patients with C9orf72 mutations. Brain Commun. 5: fcad087, https://doi.org/10.1093/braincomms/fcad087.Search in Google Scholar PubMed PubMed Central

Xiao, S., MacNair, L., McGoldrick, P., McKeever, P.M., McLean, J.R., Zhang, M., Keith, J., Zinman, L., Rogaeva, E., and Robertson, J. (2015). Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis. Ann. Neurol. 78: 568–583, https://doi.org/10.1002/ana.24469.Search in Google Scholar PubMed

Xiao, S., MacNair, L., McLean, J., McGoldrick, P., McKeever, P., Soleimani, S., Keith, J., Zinman, L., Rogaeva, E., and Robertson, J. (2016). C9orf72 isoforms in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Brain Res. 1647: 43–49, https://doi.org/10.1016/j.brainres.2016.04.062.Search in Google Scholar PubMed

Xu, Z. and Yang, C. (2014). TDP-43-The key to understanding amyotrophic lateral sclerosis. Rare Dis. 2: e944443, https://doi.org/10.4161/21675511.2014.944443.Search in Google Scholar PubMed PubMed Central

Zhang, K., Daigle, J.G., Cunningham, K.M., Coyne, A.N., Ruan, K., Grima, J.C., Bowen, K.E., Wadhwa, H., Yang, P., Rigo, F., et al.. (2018a). Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173: 958–971.e917, https://doi.org/10.1016/j.cell.2018.03.025.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Burberry, A., Wang, J.Y., Sandoe, J., Ghosh, S., Udeshi, N.D., Svinkina, T., Mordes, D.A., Mok, J., Charlton, M., et al.. (2018b). The C9orf72-interacting protein Smcr8 is a negative regulator of autoimmunity and lysosomal exocytosis. Genes Dev. 32: 929–943, https://doi.org/10.1101/gad.313932.118.Search in Google Scholar PubMed PubMed Central

Zou, Z.Y., Zhou, Z.R., Che, C.H., Liu, C.Y., He, R.L., and Huang, H.P. (2017). Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 88: 540–549, https://doi.org/10.1136/jnnp-2016-315018.Search in Google Scholar PubMed

Received: 2023-05-29
Accepted: 2023-07-07
Published Online: 2023-08-02
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2023-0060/html
Scroll to top button