Skip to main content
Log in

Echokardiographie mit hohen Bildraten in der klinischen Praxis

Grundlagen, Anwendungen, Perspektiven

Echocardiography with high frame rates in the clinical practice

Principles, applications and perspectives

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Kontinuierliche Weiterentwicklungen in der kardiovaskulären Bildgebung sowie in der Software und Hardware haben zu technologischen Fortschritten geführt, die neue Möglichkeiten für die Beurteilung der Mechanik, der Hämodynamik und der Funktion des Myokards eröffnen. Echokardiographiegeräte können heute durch spezielle Scantechniken sehr hohe Bildraten von bis zu 5000 Bildern pro Sekunde erreichen, was eine Vielzahl neuer Anwendungen, einschließlich der Scherwellenelastographie, des ultraschnellen Speckle-Trackings sowie der Darstellung von intrakardialem Blutfluss oder der Myokardperfusion, ermöglicht. Dieser Beitrag gibt einen Überblick über diese Fortschritte und zeigt mögliche Anwendungen und ihren potenziellen Mehrwert in der klinischen Praxis auf.

Abstract

Continuous developments in cardiovascular imaging, software and hardware have led to technological advancements that open new ways for assessing myocardial mechanics, hemodynamics, and function. Through new scan modalities, echocardiographic scanners can nowadays achieve very high frame rates up to 5000 frames s–1 which enables a wide variety of new applications, including shear wave elastography, ultrafast speckle tracking, the visualization of intracardiac blood flow and myocardial perfusion imaging. This review provides an overview of these advances and demonstrates possible applications and their potential added value in the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Benoy Nalin S (2013) Echocardiography in the era of multimodality cardiovascular imaging. Biomed Res Int. https://doi.org/10.1155/2013/310483

    Article  Google Scholar 

  2. Cikes M et al (2014) Ultrafast cardiac ultrasound imaging: technical principles, applications, and clinical benefits. JACC Cardiovasc Imaging 7:812–823

    PubMed  Google Scholar 

  3. Voigt J‑U et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. J Am Soc Echocardiogr 28(2):183–193. https://doi.org/10.1016/j.echo.2014.11.003

    Article  PubMed  Google Scholar 

  4. Voigt JU, Cvijic M (2019) 2‑ and 3‑dimensional myocardial strain in cardiac health and disease. JACC Cardiovasc Imaging 12(9):1849–1863. https://doi.org/10.1016/j.jcmg.2019.01.044

    Article  PubMed  Google Scholar 

  5. Hensel KO, Jenke A, Leischik R (2014) Speckle-tracking and tissue-doppler stress echocardiography in arterial hypertension: a sensitive tool for detection of subclinical LV impairment. Biomed Res Int. https://doi.org/10.1155/2014/472562

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yodwut C et al (2012) Effects of frame rate on three-dimensional speckle-tracking-based measurements of myocardial deformation. J Am Soc Echocardiogr 25:978–985

    PubMed  Google Scholar 

  7. Brekke B et al (2014) Ultra-high frame rate tissue Doppler imaging. Ultrasound Med Biol 40:222–231

    PubMed  Google Scholar 

  8. Ortega A et al (2016) A comparison of the performance of different multiline transmit setups for fast volumetric cardiac ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 63:2082–2091

    PubMed  Google Scholar 

  9. Santos P et al (2015) Acoustic output of multi-line transmit beamforming for fast cardiac imaging: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control 62:1320–1330

    PubMed  Google Scholar 

  10. Tong L et al (2014) Multi-transmit beam forming for fast cardiac imaging—experimental validation and in vivo application. IEEE Trans Med Imaging 33:1205–1219

    PubMed  Google Scholar 

  11. Tong L et al (2012) Plane wave imaging for cardiac motion estimation at high temporal resolution: a feasibility study in-vivo, S 228–231 https://doi.org/10.1109/ULTSYM.2012.0057 (Ultrasonics Symposium (IUS), 2012 IEEE International)

    Book  Google Scholar 

  12. Kanai H (2005) Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation. IEEE Trans Ultrason Ferroelectr Freq Control 52:1931–1942

    PubMed  Google Scholar 

  13. Voigt J‑U (2021) Neue Techniken zur funktionellen Analyse der kardialen Mechanik. Praxis der Echokardiografie. Thieme

    Google Scholar 

  14. Tanter M et al (2002) Ultrafast compound imaging for 2‑D motion vector estimation: application to transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 49:1363–1374

    PubMed  Google Scholar 

  15. Caenen A et al (2017) Effect of ultrafast imaging on shear wave visualization and characterization: an experimental and computational study in a pediatric ventricular model. Appl Sci 7:840

    Google Scholar 

  16. Papadacci C et al (2014) High-contrast ultrafast imaging of the heart. IEEE Trans Ultrason Ferroelectr Freq Control 61:288–301

    PubMed  PubMed Central  Google Scholar 

  17. Villemain O et al (2018) Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2018.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  18. Song S et al (2013) Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography. J Biomed Opt 18(12):121509. https://doi.org/10.1117/1.JBO.18.12.121509

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chang E et al (2017) Experimental investigation of shear wave imaging in thin soft media in various coupling conditions. IEEE https://doi.org/10.1109/ULTSYM.2017.8092577 (2017 IEEE International Ultrasonics Symposium (IUS))

    Book  Google Scholar 

  20. Correia M et al (2016) Ultrafast harmonic coherent compound (UHCC) imaging for high frame rate echocardiography and shear wave elastography. IEEE Trans Ultrason Ferroelectr Freq Control 63(3):420–431. https://doi.org/10.1109/TUFFC

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bouchard RR et al (2009) In vivo cardiac, acoustic-radiation-force-driven, shear wave velocimetry. Ultrason Imaging 31:201–213

    PubMed  PubMed Central  Google Scholar 

  22. Gheonea IA et al (2011) Differential diagnosis of breast lesions using ultrasound elastography. Indian J Radiol Imaging 21:301

    PubMed  PubMed Central  Google Scholar 

  23. Lee SM et al (2017) Liver fibrosis staging with a new 2D-shear wave elastography using comb-push technique: applicability, reproducibility, and diagnostic performance. PLoS ONE 12(5):e177264

    PubMed  PubMed Central  Google Scholar 

  24. Marais L et al (2019) Arterial stiffness assessment by shear wave elastography and ultrafast pulse wave imaging: comparison with reference techniques in normotensives and hypertensives. Ultrasound Med Biol 45:758–772

    PubMed  Google Scholar 

  25. Urban MW et al (2013) Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV). IEEE Trans Med Imaging 32(2):247–261. https://doi.org/10.1109/TMI.2012.2222656

    Article  PubMed  Google Scholar 

  26. Bouchard RR et al (2011) Acoustic radiation force-driven assessment of myocardial elasticity using the displacement ratio rate (DRR) method. Ultrasound Med Biol 37:1087–1100

    PubMed  PubMed Central  Google Scholar 

  27. Bouchard RR et al (2009) In vivo cardiac, acoustic-radiation-force-driven, shear wave velocimetry. Ultrason Imaging 31:201–213

    PubMed  PubMed Central  Google Scholar 

  28. Villemain O et al (2017) Myocardial stiffness assessment using shear wave imaging in pediatric hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 11(5):779–781. https://doi.org/10.1016/j.jcmg.2017.08.018

    Article  PubMed  Google Scholar 

  29. Petrescu A et al (2019) Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis. JACC Cardiovasc Imaging 12(12):2389–2398. https://doi.org/10.1016/j.jcmg.2018.11.029

    Article  PubMed  Google Scholar 

  30. Petrescu A et al (2020) Shear wave elastography using high-frame-rate imaging in the follow-up of heart transplantation recipients. JACC Cardiovasc Imaging 13:2304–2313

    PubMed  Google Scholar 

  31. Vos HJ et al (2015) Myocardial passive shear wave detection. IEEE https://doi.org/10.1109/ULTSYM.2015.0152 (2015 IEEE International Ultrasonics Symposium (IUS))

    Book  Google Scholar 

  32. Caenen A et al (2022) Assessing cardiac stiffness using ultrasound shear wave elastography. Phys Med Biol. https://doi.org/10.1088/1361-6560/ac404d

    Article  PubMed  PubMed Central  Google Scholar 

  33. Santos P et al (2018) Natural shear wave imaging in the human heart: normal values, feasibility and reproducibility. IEEE Trans Ultrason Ferroelectr Freq Control. https://doi.org/10.1109/TUFFC.2018.2881493

    Article  PubMed  Google Scholar 

  34. Papadacci C et al (2020) 4D ultrafast ultrasound imaging of naturally occurring shear waves in the human heart. IEEE Trans Med Imaging 39:4436–4444

    PubMed  Google Scholar 

  35. Salles S et al (2021) 3D myocardial mechanical wave measurements: toward in vivo 3D myocardial elasticity mapping. JACC Cardiovasc Imaging 14(8):1495–1505. https://doi.org/10.1016/j.jcmg.2020.05.037

    Article  PubMed  Google Scholar 

  36. Pernot M, Villemain O (2020) Myocardial stiffness assessment by ultrasound. JACC Cardiovasc Imaging 13:2314–2315

    PubMed  Google Scholar 

  37. Pernot M et al (2011) Real-time assessment of myocardial contractility using shear wave imaging. J Am Coll Cardiol 58:65–72

    PubMed  Google Scholar 

  38. Vejdani-Jahromi M et al (2017) Quantifying myocardial contractility changes using ultrasound-based shear wave elastography. J Am Soc Echocardiogr 30:90–96

    PubMed  Google Scholar 

  39. Villemain O et al (2022) Ultrafast ultrasound imaging in pediatric and adult cardiology. JACC Cardiovasc Imaging 13(8):1771–1791. https://doi.org/10.1016/j.jcmg.2019.09.019

    Article  Google Scholar 

  40. Petrescu A, D’hooge J, Voigt JU (2021) Concepts and applications of ultrafast cardiac ultrasound imaging. Echocardiography 38(1):7–15. https://doi.org/10.1111/echo.14971

    Article  PubMed  Google Scholar 

  41. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease. Circulation 107:346–354

    PubMed  Google Scholar 

  42. Bezy S et al (2020) Shear wave propagation velocity after aortic valve closure could be a novel parameter for myocardial contractility. Eur Heart J. https://doi.org/10.1093/ehjci/jez319.034

    Article  Google Scholar 

  43. Pernot M et al (2016) Shear wave imaging of passive diastolic myocardial stiffness: stunned versus infarcted myocardium. JACC Cardiovasc Imaging 9:1023–1030

    PubMed  PubMed Central  Google Scholar 

  44. Pedreira O et al (2022) Quantitative stiffness assessment of cardiac grafts using ultrasound in a porcine model: a tissue biomarker for heart transplantation. eBioMedicine 83:104201. https://doi.org/10.1016/j.ebiom.2022.104201

    Article  PubMed  PubMed Central  Google Scholar 

  45. Werner A (2022) How well does shear wave imaging predict elevated filling pressures? A comparison to the actual guideline algorithm. Eur Heart J. https://doi.org/10.1093/ehjci/jeab289.350

    Article  Google Scholar 

  46. Wouters L et al (2022) Septal scar detection in patients with left bundle branch block using echocardiographic shear wave elastography. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2022.11.008

    Article  PubMed  Google Scholar 

  47. Marian AJ, Braunwald E (2017) Hypertrophic cardiomyopathy. Circ Res 121(7):749–770

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fikrle M et al (2013) Cardiac amyloidosis: a comprehensive review. Cor Vasa 55:e60–e75

    Google Scholar 

  49. Drazner MH (2011) The progression of hypertensive heart disease. Circulation 123:327–334

    PubMed  Google Scholar 

  50. Cvijic M et al (2020) Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease. Eur Heart J Cardiovasc Imaging 21(6):664–672. https://doi.org/10.1093/ehjci/jez205

    Article  PubMed  Google Scholar 

  51. Dronavalli VB, Rogers CA, Banner NR (2015) Primary cardiac allograft dysfunction-validation of a clinical definition. Transplantation 99:1919–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rowan RA, Billingham ME (1990) Pathologic changes in the long-term transplanted heart: a morphometric study of myocardial hypertrophy, vascularity, and fibrosis. Hum Pathol 21:767–772

    CAS  PubMed  Google Scholar 

  53. Lee WN et al (2012) Mapping myocardial fiber orientation using echocardiography-based shear wave imaging. IEEE Trans Med Imaging 31:554–562

    PubMed  Google Scholar 

  54. Gennisson JL et al (2010) Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 36(5):789–801. https://doi.org/10.1016/j.ultrasmedbio.2010.02.013

    Article  PubMed  Google Scholar 

  55. Lee WN et al (2012) Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium. Phys Med Biol 57(16):5075–5095

    PubMed  Google Scholar 

  56. Correia M et al (2018) 3D elastic tensor imaging in weakly transversely isotropic soft tissues. Phys Med Biol 63:155005

    CAS  PubMed  Google Scholar 

  57. Ngo HH et al (2022) Anisotropy in ultrasound shear wave elastography: an add-on to muscles characterization. Front Physiol 13:1000612

    PubMed  PubMed Central  Google Scholar 

  58. Lee W‑N et al (2010) Noninvasive assessment of myocardial anisotropy in vitro and in vivo using supersonic shear wave imaging. IEEE https://doi.org/10.1109/ULTSYM.2010.5935898 (2010 IEEE International Ultrasonics Symposium)

    Book  Google Scholar 

  59. Fujikura K et al (2021) Speckle-tracking echocardiography with novel imaging technique of higher frame rate. J Clin Med 10(10):2095

    PubMed  PubMed Central  Google Scholar 

  60. Joos P et al (2018) High-frame-rate speckle-tracking echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 65:720–728

    PubMed  Google Scholar 

  61. Andersen MV et al (2016) High-frame-rate deformation imaging in two dimensions using continuous speckle-feature tracking. Ultrasound Med Biol 42:2606–2615

    PubMed  Google Scholar 

  62. Orlowska M et al (2020) In-vivo comparison of multiline transmission and diverging wave imaging for high frame rate speckle tracking echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 68(5):1511–1520

    Google Scholar 

  63. Orlowska M et al (2020) A novel 2‑D speckle tracking method for high-frame-rate echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 67:1764–1775

    PubMed  Google Scholar 

  64. Hajhosseiny R et al (2020) Coronary magnetic resonance angiography. JACC Cardiovasc Imaging 13:2653–2672

    PubMed  Google Scholar 

  65. Hoffmann U et al (2006) Coronary CT angiography. J Nucl Med 47(5):797–806

    PubMed  Google Scholar 

  66. Maresca D et al (2018) Noninvasive imaging of the coronary vasculature using ultrafast ultrasound. JACC Cardiovasc Imaging 11(6):798–808. https://doi.org/10.1016/j.jcmg.2017.05.021

    Article  PubMed  PubMed Central  Google Scholar 

  67. Demene C et al (2015) Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases doppler and fUltrasound sensitivity. IEEE Trans Med Imaging 34:2271–2285

    PubMed  Google Scholar 

  68. Correia M et al (2020) Quantitative imaging of coronary flows using 3D ultrafast Doppler coronary angiography. Phys Med Biol 65(10):105013. https://doi.org/10.1088/1361-6560/ab8d78

    Article  CAS  PubMed  Google Scholar 

  69. Chapman JV (1990) The technical aspects of Doppler. Ultrasound. https://doi.org/10.1007/978-94-009-0647-1_1

    Article  Google Scholar 

  70. Prinz C et al (2012) Can echocardiographic particle image velocimetry correctly detect motion patterns as they occur in blood inside heart chambers? A validation study using moving phantoms. Cardiovasc Ultrasound 10:24

    PubMed  PubMed Central  Google Scholar 

  71. Fadnes S et al (2017) In vivo intracardiac vector flow imaging using phased array transducers for pediatric cardiology. IEEE Trans Ultrason Ferroelectr Freq Control 64:1318–1326

    PubMed  Google Scholar 

  72. Fadnes S et al (2014) Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking. Ultrasound Med Biol 40:2379–2391

    PubMed  Google Scholar 

  73. Ramalli A et al (2020) High frame rate color Doppler to measure intra-ventricular pressure gradients. Proceedings IEEE Ultrasonics

  74. Wigen M, Lovstakken L (2016) In vivo three-dimensional intra-cardiac vector flow imaging using a 2D matrix array transducer https://doi.org/10.1109/ULTSYM.2016.7728690 (2016 IEEE International Ultrasonics Symposium (IUS))

    Book  Google Scholar 

  75. Nyrnes SA et al (2020) Blood speckle-tracking based on high-frame rate ultrasound imaging in pediatric cardiology. J Am Soc Echocardiogr 33:493–503.e5

    PubMed  Google Scholar 

  76. Wigen MS et al (2018) 4‑D intracardiac ultrasound vector flow imaging–feasibility and comparison to phase-contrast MRI. IEEE Trans Med Imaging 37:2619–2629

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens-Uwe Voigt.

Ethics declarations

Interessenkonflikt

A. Petrescu und J.-U. Voigt geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrescu, A., Voigt, JU. Echokardiographie mit hohen Bildraten in der klinischen Praxis. Herz 48, 339–351 (2023). https://doi.org/10.1007/s00059-023-05199-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-023-05199-x

Schlüsselwörter

Keywords

Navigation