Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Recent Advances in Total Synthesis of Tetrahydroisoquinoline Alkaloids Quinocarcin and Lemonomycin

Author(s): Ju Guo*, Yang Yang, Lanhua Shen, Jingyi Li, Fuan Li and Sifan Wang

Volume 21, Issue 8, 2024

Published on: 19 September, 2023

Page: [852 - 861] Pages: 10

DOI: 10.2174/1570193X20666230801101427

Price: $65

Abstract

Tetrahydroisoquinoline natural products are a kind of alkaloids containing various pharmacological activities. These structurally diverse alkaloids mainly consist of two subclasses, monotetrahydroisoquinolines (MTHI) and bistetrahydroisoquinolines (BTHI). Since its family member, Ecteinascidin-743 (INN: Trabectedin, trade name: Yondelis®), has been approved by European Union in 2007 and the FDA in 2015 for the treatment of advanced soft tissue tumors, the research on this kind of natural product is full of new vitality. Quinocarcin and lemonomycin share a common diazabicyclo[3.2.1]octane framework that belongs to the subclass of MTHI, and their excellent antitumor activity and challenging architecture have made them an ideal target for total synthesis. In this short review, the progress in the total synthesis of quinocarcin and lemonomycin is summarized.

Keywords: Tetrahydroisoquinoline alkaloid, monotetrahydroisoquinolines, bistetrahydroisoquinolines, total synthesis, quinocarcin, lemonomycin

Graphical Abstract
[1]
Kluepfel, D.; Baker, H.A.; Piattoni, G.; Sehgal, S.N.; Sidorowicz, A.; Singh, K.; Vézina, C. Naphthyridinomycin, a new broad-spectrum antibiotic. J. Antibiot. (Tokyo), 1975, 28(7), 497-502.
[http://dx.doi.org/10.7164/antibiotics.28.497] [PMID: 807549]
[2]
Ishiguro, K.; Sakiyama, S.; Takahashi, K.; Arai, T. Mode of action of saframycin A, a novel heterocyclic quinone antibiotic. Inhibition of RNA synthesis in vivo and in vitro. Biochemistry, 1978, 17(13), 2545-2550.
[http://dx.doi.org/10.1021/bi00606a014] [PMID: 567065]
[3]
Davidson, B.S. Renieramycin G, a new alkaloid from the sponge Xestospongia caycedoi. Tetrahedron Lett., 1992, 33(26), 3721-3724.
[http://dx.doi.org/10.1016/0040-4039(92)80008-8]
[4]
Martinez, E.J.; Corey, E.J.; Owa, T. Antitumor activity- and gene expression-based profiling of ecteinascidin Et 743 and phthalascidin Pt 650. Chem. Biol., 2001, 8(12), 1151-1160.
[http://dx.doi.org/10.1016/S1074-5521(01)00082-5] [PMID: 11755394]
[5]
Fontana, A.; Cavaliere, P.; Wahidulla, S.; Naik, C.G.; Cimino, G. A new antitumor isoquinoline alkaloid from the marine nudibranch jorunna funebris. Tetrahedron, 2000, 56(37), 7305-7308.
[http://dx.doi.org/10.1016/S0040-4020(00)00629-3]
[6]
Valoti, G.; Nicoletti, M.I.; Pellegrino, A.; Jimeno, J.; Hendriks, H.; D’Incalci, M.; Faircloth, G.; Giavazzi, R. Ecteinascidin-743, a new marine natural product with potent antitumor activity on human ovarian carcinoma xenografts. Clin. Cancer Res., 1998, 4(8), 1977-1983.
[PMID: 9717828]
[7]
Martinez, E.J.; Owa, T.; Schreiber, S.L.; Corey, E.J. Phthalascidin, a synthetic antitumor agent with potency and mode of action comparable to ecteinascidin 743. Proc. Natl. Acad. Sci. USA, 1999, 96(7), 3496-3501.
[http://dx.doi.org/10.1073/pnas.96.7.3496] [PMID: 10097064]
[8]
Plowright, A.T.; Schaus, S.E.; Myers, A.G. Transcriptional response pathways in a yeast strain sensitive to saframycin a and a more potent analog: evidence for a common basis of activity. Chem. Biol., 2002, 9(5), 607-618.
[http://dx.doi.org/10.1016/S1074-5521(02)00137-0] [PMID: 12031667]
[9]
Saito, N.; Kameyama, N.; Kubo, A. Structure of Saframycin R. Tetrahedron, 2000, 56(51), 9937-9944.
[http://dx.doi.org/10.1016/S0040-4020(00)00972-8]
[10]
Le, V.H.; Inai, M.; Williams, R.M.; Kan, T. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics. Nat. Prod. Rep., 2015, 32(2), 328-347.
[http://dx.doi.org/10.1039/C4NP00051J] [PMID: 25273374]
[11]
Suzuki, K.; Sato, T.; Morioka, M.; Nagai, K.; Abe, K.; Yamaguchi, H.; Saito, T.; Ohmi, Y.; Susaki, K. Tetrazomine, a new antibiotic produced by an actinomycete strain. Taxonomy, fermentation, isolation and characterization. J. Antibiot. (Tokyo), 1991, 44(5), 479-485.
[http://dx.doi.org/10.7164/antibiotics.44.479] [PMID: 2061191]
[12]
Siengalewicz, P.; Rinner, U.; Mulzer, J. Recent progress in the total synthesis of naphthyridinomycin and lemonomycin tetrahydroisoquinoline antitumor antibiotics (TAAs). Chem. Soc. Rev., 2008, 37(12), 2676-2690.
[http://dx.doi.org/10.1039/b804167a] [PMID: 19020681]
[13]
Fujimoto, K.; Oka, T.; Morimoto, M. Antitumor activity of a novel antitumor antibiotic, quinocarmycin citrate (KW2152). Cancer Res., 1987, 47(6), 1516-1522.
[PMID: 2434218]
[14]
Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov., 2009, 8(1), 69-85.
[http://dx.doi.org/10.1038/nrd2487] [PMID: 19096380]
[15]
Corey, E.J.; Gin, D.Y.; Kania, R.S. Enantioselective total synthesis of ecteinascidin 743. J. Am. Chem. Soc., 1996, 118(38), 9202-9203.
[http://dx.doi.org/10.1021/ja962480t]
[16]
Nakajima, N.; Yoshida, E.; Toma, T.; Nishiyama, Y.; Inoue, M.; Fukuyama, T.; Yokoshima, S. Formal synthesis of ecteinascidin 743 via an intramolecular cascade heck reaction to construct the diazabicyclo[3.3.1]nonane framework. Org. Lett., 2022, 24(44), 8228-8232.
[http://dx.doi.org/10.1021/acs.orglett.2c03357] [PMID: 36305771]
[17]
Zheng, Y.; Li, X.D.; Sheng, P.Z.; Yang, H.D.; Wei, K.; Yang, Y.R. Asymmetric total syntheses of (−)-fennebricin A, (−)-renieramycin J, (−)-renieramycin G, (−)-renieramycin M, and (−)- jorunnamycin A via C-H activation. Org. Lett., 2020, 22(11), 4489-4493.
[http://dx.doi.org/10.1021/acs.orglett.0c01493] [PMID: 32437173]
[18]
Jia, J.; Chen, R.; Jia, Y.; Gu, H.; Zhou, Q.; Chen, X. Convergent formal synthesis of ecteinascidin 743. J. Org. Chem., 2019, 84(21), 13696-13706.
[http://dx.doi.org/10.1021/acs.joc.9b01778] [PMID: 31523959]
[19]
Kawagishi, F.; Toma, T.; Inui, T.; Yokoshima, S.; Fukuyama, T. Total synthesis of ecteinascidin 743. J. Am. Chem. Soc., 2013, 135(37), 13684-13687.
[http://dx.doi.org/10.1021/ja408034x] [PMID: 24001124]
[20]
Enomoto, T.; Yasui, Y.; Takemoto, Y. Synthetic study toward ecteinascidin 743: concise construction of the diazabicyclo[3.3.1]nonane skeleton and assembly of the pentacyclic core. J. Org. Chem., 2010, 75(14), 4876-4879.
[http://dx.doi.org/10.1021/jo100788j] [PMID: 20557114]
[21]
Jin, W.; Metobo, S.; Williams, R.M. Synthetic studies on ecteinascidin-743: constructing a versatile pentacyclic intermediate for the synthesis of ecteinascidins and saframycins. Org. Lett., 2003, 5(12), 2095-2098.
[http://dx.doi.org/10.1021/ol034575n] [PMID: 12790537]
[22]
Fishlock, D.; Williams, R.M. Synthetic studies on Et-743. Assembly of the pentacyclic core and a formal total synthesis. J. Org. Chem., 2008, 73(24), 9594-9600.
[http://dx.doi.org/10.1021/jo801159k] [PMID: 18687003]
[23]
Chen, R.; Liu, H.; Chen, X. Asymmetric total synthesis of (-)-jorunnamycins A and C and (-)-jorumycin from L-tyrosine. J. Nat. Prod., 2013, 76(9), 1789-1795.
[http://dx.doi.org/10.1021/np400538q] [PMID: 24070054]
[24]
Martinez, E.J.; Corey, E.J. Enantioselective synthesis of saframycin A and evaluation of antitumor activity relative to ecteinascidin/saframycin hybrids. Org. Lett., 1999, 1(1), 75-78.
[http://dx.doi.org/10.1021/ol990553i] [PMID: 10822537]
[25]
Zhou, Q.; Jia, J.; Wang, Y.; Chen, R.; Chen, X. Practical synthesis of phthalascidin and zalypsis antitumor agents. Tetrahedron Lett., 2021, 86, 153498.
[http://dx.doi.org/10.1016/j.tetlet.2021.153498]
[26]
Cuevas, C.; Pérez, M.; Martín, M.J.; Chicharro, J.L.; Fernández-Rivas, C.; Flores, M.; Francesch, A.; Gallego, P.; Zarzuelo, M.; de la Calle, F.; García, J.; Polanco, C.; Rodríguez, I.; Manzanares, I. Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org. Lett., 2000, 2(16), 2545-2548.
[http://dx.doi.org/10.1021/ol0062502] [PMID: 10956543]
[27]
Jia, J.; Chen, R.; Liu, H.; Li, X.; Jia, Y.; Chen, X. Asymmetric synthesis of (−)-renieramycin T. Org. Biomol. Chem., 2016, 14(30), 7334-7344.
[http://dx.doi.org/10.1039/C6OB01064D] [PMID: 27405490]
[28]
Liao, X.W.; Liu, W.; Dong, W.F.; Guan, B.H.; Chen, S.Z.; Liu, Z.Z. Total synthesis of (−)-renieramycin G from l-tyrosine. Tetrahedron, 2009, 65(29-30), 5709-5715.
[http://dx.doi.org/10.1016/j.tet.2009.05.025]
[29]
Vincent, G.; Lane, J.W.; Williams, R.M. Regioselectivity of Pictet-Spengler cyclization reactions to construct the pentacyclic frameworks of the ecteinascidin-saframycin class of tetrahydroisoquinoline antitumor antibiotics. Tetrahedron Lett., 2007, 48(21), 3719-3722.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.113] [PMID: 19578531]
[30]
Chen, J.; Chen, X.; Willot, M.; Zhu, J. Asymmetric total syntheses of ecteinascidin 597 and ecteinascidin 583. Angew. Chem. Int. Ed., 2006, 45(47), 8028-8032.
[http://dx.doi.org/10.1002/anie.200603179] [PMID: 17099922]
[31]
Chandrasekhar, S.; Reddy, N.R.; Rao, Y.S. Synthetic studies on Ecteinascidin-743: synthesis of building blocks through Sharpless asymmetric dihydroxylation and aza-Michael reactions. Tetrahedron, 2006, 62(51), 12098-12107.
[http://dx.doi.org/10.1016/j.tet.2006.09.056]
[32]
Zheng, S.; Chan, C.; Furuuchi, T.; Wright, B.J.D.; Zhou, B.; Guo, J.; Danishefsky, S.J. Stereospecific formal total synthesis of ecteinascidin 743. Angew. Chem. Int. Ed., 2006, 45(11), 1754-1759.
[http://dx.doi.org/10.1002/anie.200503983] [PMID: 16496274]
[33]
Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. Total synthesis of ecteinascidin 743. J. Am. Chem. Soc., 2002, 124(23), 6552-6554.
[http://dx.doi.org/10.1021/ja026216d] [PMID: 12047173]
[34]
Zhou, B.; Guo, J.; Danishefsky, S.J. A novel face specific Mannich closure providing access to the saframycin-ecteinascidin series of piperazine based alkaloids. Tetrahedron Lett., 2000, 41(13), 2043-2046.
[http://dx.doi.org/10.1016/S0040-4039(00)00106-4]
[35]
Fukuyama, T.; Yang, L.; Ajeck, K.L.; Sachleben, R.A. Total synthesis of (.+-.)-saframycin A. J. Am. Chem. Soc., 1990, 112(9), 3712-3713.
[http://dx.doi.org/10.1021/ja00165a095]
[36]
Chen, J.; Chen, X.; Bois-Choussy, M.; Zhu, J. Total synthesis of ecteinascidin 743. J. Am. Chem. Soc., 2006, 128(1), 87-89.
[http://dx.doi.org/10.1021/ja0571794] [PMID: 16390134]
[37]
Smith, L.H.S.; Nguyen, T.T.; Sneddon, H.F.; Procter, D.J. Synthesis of the ABH rings of ecteinascidin 597 using a connective Pummerer-type cyclisation. Chem. Commun. (Camb.), 2011, 47(38), 10821-10823.
[http://dx.doi.org/10.1039/c1cc13992d] [PMID: 21863175]
[38]
Xu, S.; Wang, G.; Zhu, J.; Shen, C.; Yang, Z.; Yu, J.; Li, Z.; Lin, T.; Sun, X.; Zhang, F. A concise and practical semisynthesis of ecteinascidin 743 and (-)-jorumycin. Eur. J. Org. Chem., 2017, 2017(5), 975-983.
[http://dx.doi.org/10.1002/ejoc.201601409]
[39]
Welin, E.R.; Ngamnithiporn, A.; Klatte, M.; Lapointe, G.; Pototschnig, G.M.; McDermott, M.S.J.; Conklin, D.; Gilmore, C.D.; Tadross, P.M.; Haley, C.K.; Negoro, K.; Glibstrup, E.; Grünanger, C.U.; Allan, K.M.; Virgil, S.C.; Slamon, D.J.; Stoltz, B.M. Concise total syntheses of (-)-jorunnamycin A and (-)-jorumycin enabled by asymmetric catalysis. Science, 2019, 363(6424), 270-275.
[http://dx.doi.org/10.1126/science.aav3421] [PMID: 30573544]
[40]
Yokoya, M.; Toyoshima, R.; Suzuki, T.; Le, V.H.; Williams, R.M.; Saito, N. Stereoselective total synthesis of (−)-renieramycin T. J. Org. Chem., 2016, 81(10), 4039-4047.
[http://dx.doi.org/10.1021/acs.joc.6b00327] [PMID: 27019081]
[41]
Scott, J.D.; Williams, R.M. Total synthesis of (−)-tetrazomine and determination of its stereochemistry. Angew. Chem. Int. Ed., 2001, 40(8), 1463-1465.
[http://dx.doi.org/10.1002/1521-3773(20010417)40:8<1463::AID-ANIE1463>3.0.CO;2-8]
[42]
Scott, J.D.; Williams, R.M. Total synthesis of (-)-tetrazomine. Determination of the stereochemistry of tetrazomine and the synthesis and biological activity of tetrazomine analogues. J. Am. Chem. Soc., 2002, 124(12), 2951-2956.
[http://dx.doi.org/10.1021/ja0174027] [PMID: 11902886]
[43]
Scott, J.D.; Williams, R.M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev., 2002, 102(5), 1669-1730.
[http://dx.doi.org/10.1021/cr010212u] [PMID: 11996547]
[44]
Wang, Y.; Tang, Y.F.; Liu, Z.Z.; Chern, S.Z.; Liang, X.T. Synthetic progress in saframycins and ecteinascidins. Youji Huaxue, 2005, 25, 42-52.
[45]
Liao, X.W.; Dong, W.F.; Liu, W.; Chen, S.Z.; Liu, Z.Z. Synthetic progress of the tetrahydroisoquinoline antitumor alkaloids. Youji Huaxue, 2010, 30, 317-329.
[46]
Song, Y.; Hu, L.; Chen, R.; Chen, X. Research progress in synthesis of renieramycin-type alkaloids. Youji Huaxue, 2015, 35(8), 1627-1640.
[http://dx.doi.org/10.6023/cjoc201504003]
[47]
Gao, Y.; Tu, N.; Liu, X.; Lu, K.; Chen, S.; Guo, J. Progress in the total synthesis of antitumor tetrahydroisoquinoline alkaloids. Chem. Biodivers., 2023, 20(5), e202300172.
[http://dx.doi.org/10.1002/cbdv.202300172] [PMID: 36939065]
[48]
Takahashi, K.; Tomita, F.; Tamaoki, T. Isolation, physicochemical characteristics and structure determination. J. Antibiot. (Tokyo), 1983, 36, 468-470.
[http://dx.doi.org/10.7164/antibiotics.36.468] [PMID: 6874563]
[49]
Fukuyama, T.; Nunes, J.J. Stereocontrolled total synthesis of (.+-.)-quinocarcin. J. Am. Chem. Soc., 1988, 110(15), 5196-5198.
[http://dx.doi.org/10.1021/ja00223a052]
[50]
Garner, P.; Ho, W.B.; Shin, H. Asymmetric synthesis of (-)-quinocarcin. J. Am. Chem. Soc., 1992, 114(7), 2767-2768.
[http://dx.doi.org/10.1021/ja00033a089]
[51]
Garner, P.; Ho, W.B.; Shin, H. The asymmetric synthesis of (-)-quinocarcin via a 1,3-dipolar cycloadditive strategy. J. Am. Chem. Soc., 1993, 115(23), 10742-10753.
[http://dx.doi.org/10.1021/ja00076a036]
[52]
Katoh, T.; Kirihara, M.; Nagata, Y.; Kobayashi, Y.; Arai, K.; Minami, J.; Terashima, S. Synthetic studies on quinocarcin and its related compounds. 4. Tetrahedron, 1994, 50(21), 6239-6258.
[http://dx.doi.org/10.1016/S0040-4020(01)80644-X]
[53]
Katoh, T.; Terashima, S. Synthesis and cytotoxicity of natural (-)-quinocarcin and its related compounds. Pure Appl. Chem., 1996, 68(3), 703-706.
[http://dx.doi.org/10.1351/pac199668030703]
[54]
Kwon, S.; Myers, A.G. Synthesis of (-)-quinocarcin by directed condensation of α-amino aldehydes. J. Am. Chem. Soc., 2005, 127(48), 16796-16797.
[http://dx.doi.org/10.1021/ja056206n] [PMID: 16316220]
[55]
Wu, Y.C.; Liron, M.; Zhu, J. Asymmetric total synthesis of (-)-quinocarcin. J. Am. Chem. Soc., 2008, 130(22), 7148-7152.
[http://dx.doi.org/10.1021/ja800662q] [PMID: 18454525]
[56]
Fang, S.L.; Jiang, M.X.; Zhang, S.; Wu, Y.J.; Shi, B.F. Scalable formal synthesis of (−)-quinocarcin. Org. Lett., 2019, 21(12), 4609-4613.
[http://dx.doi.org/10.1021/acs.orglett.9b01511] [PMID: 31180224]
[57]
Allan, K.M.; Stoltz, B.M. A concise total synthesis of (-)-quinocarcin via aryne annulation. J. Am. Chem. Soc., 2008, 130(51), 17270-17271.
[http://dx.doi.org/10.1021/ja808112y] [PMID: 19035638]
[58]
Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. Total Synthesis of (−)-quinocarcin by gold(I)-catalyzed regioselective hydroamination. Angew. Chem., 2012, 124(36), 9303-9306.
[http://dx.doi.org/10.1002/ange.201205106]
[59]
Chiba, H.; Sakai, Y.; Ohara, A.; Oishi, S.; Fujii, N.; Ohno, H. Convergent synthesis of (-)-quinocarcin based on the combination of Sonogashira coupling and gold(I)-catalyzed 6-endo-dig hydroamination. Chemistry, 2013, 19(27), 8875-8883.
[http://dx.doi.org/10.1002/chem.201300687] [PMID: 23681666]
[60]
Chiba, H.; Sakai, Y.; Oishi, S.; Fujii, N.; Ohno, H. Lewis-acid-mediated ring-exchange reaction of dihydrobenzofurans and its application to the formal total synthesis of (−)-quinocarcinamide. Tetrahedron Lett., 2012, 53(46), 6273-6276.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.030]
[61]
Flanagan, M.E.; Williams, R.M. Synthetic studies on quinocarcin: total synthesis of (.+-.)-quinocarcinamide via dipole cycloaddition of an azomethine ylide generated by NBS oxidation. J. Org. Chem., 1995, 60(21), 6791-6797.
[http://dx.doi.org/10.1021/jo00126a031]
[62]
Whaley, H.A.; Patterson, E.L.; Dann, M.; Shay, A.J.; Porter, J.N. Isolation and characterization of Lemonomycin, a new antibiotic. Antimicrob. Agents Chemother., 1964, 14, 83-86.
[PMID: 14289713]
[63]
Ashley, E.R.; Cruz, E.G.; Stoltz, B.M. The total synthesis of (--)-lemonomycin. J. Am. Chem. Soc., 2003, 125(49), 15000-15001.
[http://dx.doi.org/10.1021/ja039223q] [PMID: 14653730]
[64]
Magnus, P.; Matthews, K.S. Synthesis of the tetrahydroisoquinoline alkaloid (+/-)-renieramycin G and A (+/-)-lemonomycinone analogue from a common intermediate. J. Am. Chem. Soc., 2005, 127(36), 12476-12477.
[http://dx.doi.org/10.1021/ja0535817] [PMID: 16144380]
[65]
Zhu, J.; Couturier, C.; Schlama, T. Synthetic studies towards (-)-lemonomycin, synthesis of fused tetracycles. Synlett, 2006, 2006(11), 1691-1694.
[http://dx.doi.org/10.1055/s-2006-944225]
[66]
Wu, Y.C.; Bernadat, G.; Masson, G.; Couturier, C.; Schlama, T.; Zhu, J. Synthetic studies on (-)-lemonomycin: an efficient asymmetric synthesis of lemonomycinone amide. J. Org. Chem., 2009, 74(5), 2046-2052.
[http://dx.doi.org/10.1021/jo8027449] [PMID: 19196163]
[67]
Masson, G.; Zhu, J.; Bernadat, G.; George, N.; Couturier, C.; Schlama, T. Asymmetric Synthesis of 2,4,6-Trideoxy-4-(dimethylamino)-3-C-methyl-l-lyxohexopyranose (Lemonose). Synlett, 2011, 2011(4), 576-578.
[http://dx.doi.org/10.1055/s-0030-1259531]
[68]
Mulzer, J.; Siengalewicz, P.; Brecker, L. Stereocontrolled synthesis of the tetracyclic core framework of (-)-lemonomycin. Synlett, 2008, 2008(16), 2443-2446.
[http://dx.doi.org/10.1055/s-2008-1078273]
[69]
Yoshida, A.; Akaiwa, M.; Asakawa, T.; Hamashima, Y.; Yokoshima, S.; Fukuyama, T.; Kan, T. Total synthesis of (-)-lemonomycin. Chemistry, 2012, 18(36), 11192-11195.
[http://dx.doi.org/10.1002/chem.201202073] [PMID: 22848018]
[70]
Jiménez-Somarribas, A.; Williams, R.M. Synthetic studies on lemonomycin: construction of the tetracyclic core. Tetrahedron, 2013, 69(35), 7505-7512.
[http://dx.doi.org/10.1016/j.tet.2013.05.009] [PMID: 25083002]
[71]
Magnus, P.; Matthews, K.S. A divergent strategy for synthesis of the tetrahydroisoquinoline alkaloids renieramycin G and a lemonomycin analog. Tetrahedron, 2012, 68(31), 6343-6360.
[http://dx.doi.org/10.1016/j.tet.2012.02.043]
[72]
Castro, C.E.; Havlin, R.; Honwad, V.K.; Malte, A.M.; Moje, S.W. Copper(I) substitutions. Scope and mechanism of cuprous acetylide substitutions. J. Am. Chem. Soc., 1969, 91(23), 6464-6470.
[http://dx.doi.org/10.1021/ja01051a049]
[73]
Qi, W.Y.; Fang, S.L.; Xu, X.T.; Zhang, K.; Shi, B.F. Asymmetric formal synthesis of (−)-tetrazomine. Org. Chem. Front., 2021, 8(8), 1802-1807.
[http://dx.doi.org/10.1039/D1QO00029B]
[74]
Guo, J.; Dong, W.; Liu, W.; Yan, Z.; Wang, N.; Liu, Z. Synthesis and cytotoxicity of 3-aryl acrylic amide derivatives of the simplified saframycin-ecteinascidin skeleton prepared from l -dopa. Eur. J. Med. Chem., 2013, 62, 670-676.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.033] [PMID: 23434640]
[75]
Guo, J.; Yang, Y.; Wang, N.; Liu, Z. Synthesis and cytotoxicity screening of derivatives of the simplified ecteinascidin pentacyclic skeleton as anticancer agents. Tetrahedron Lett., 2018, 59(33), 3202-3205.
[http://dx.doi.org/10.1016/j.tetlet.2018.07.027]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy