Skip to main content
Log in

Clusteroluminescence of Unconjugated Polymers: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The current state of research on non-conventional luminescence of unconjugated polymers, which is caused by the occurrence of through-space conjugation due to the overlapping of electronic orbitals of atoms in aggregates formed at high concentrations of substances in solutions or the solid state, is considered. The luminescent properties of different types of polymers containing oxygen, nitrogen, sulfur, silicon, boron, phosphorus is analyzed. The possibilities of the practical applications of polymer cluster luminophores in the fields such as ecosystem monitoring, medicine, biology, encryption, forensics, and optoelectronics are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

© 2020 American Chemical Society.

Fig. 2.

© 2017American Chemical Society.

Fig. 3.

© 2018 American Chemical Society.

Fig. 4.

© 2022 American Chemical Society.

Fig. 5.
Fig. 6.

© 2019 American Chemical Society.

Fig. 7.
Fig. 8.

© 2019 Elsevier.

Fig. 9.

© 2018 The Royal Society of Chemistry.

Fig. 10.
Fig. 11.

© 2016 The Royal Society of Chemistry.

Fig. 12.

© 2020 Wiley-VCH.

Fig. 13.

© 2019 American Chemical Society.

Fig. 14.

© 2022 Elsevier.

Similar content being viewed by others

References

  1. G. Ahumada and M. Borkowska, Polymers, 14, No. 6, 1118 (2022), https://doi.org/10.3390/polym14061118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Z. Yao, W. Zong, K. Wang, et al., React. Funct. Polym., 163, 104898 (2021), https://doi.org/10.1016/j.reactfunctpolym.2021.104898.

  3. C. Li, Y. Xu, Y. Liu, et al., Nano Energy, 65, 104057 (2019), https://doi.org/10.1016/j.nanoen.2019.104057.

  4. F. J. Ostos, G. Iasilli, M. Carlotti, and A. Pucci, Polymers, 12, No. 12, 2898 (2020), https://doi.org/10.3390/polym12122898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. Wu, W. Xin, Y. Wu, et al., Chem. Eng. J., 422, 130158 (2021), https://doi.org/10.1016/j.cej.2021.130158.

  6. Q. Li, W.-C. Zhang, C.-F. Wang, S. Chen, et al., RSC Adv., 5, No. 124, 102294-102299 (2015), https://doi.org/10.1039/C5RA19173D.

    Article  CAS  Google Scholar 

  7. U.Lange, N. V. Roznyatovskaya, and V. M. Mirsky, Anal. Chim. Acta., 614, No. 1, 1-26 (2008), 10.10167j.aca.2008.02.068.

  8. L. Hu, Z. Chen, Y. Liu, et al., ACS Appl. Mater. Interfaces, 12, No. 51, 57281-57289 (2020), https://doi.org/10.1021/acsami.0c12955.

    Article  CAS  PubMed  Google Scholar 

  9. P. Liu, D. Li, M. Kang, et al., Small Struct., 4, No. 5, 2200329 (2023), https://doi.org/10.1002/sstr.202200329.

    Article  CAS  Google Scholar 

  10. N. N. Barashkov and O. A. Gunder, Fluorescent Polymers, Hemel Hempstead, Simon & Schuster International Group (Ellis Horwood) (1994).

  11. B. V. Grynyov, T. V. Sakhno, and V. G. Senchishin, Optically Transparent And Fluorescent Polymers [in Ukrainian], Kharkiv Institute of single crystals (2003).

  12. M. E. Kompan and I. G. Aksyanov, Phys. Solid State, 51, No. 5, 1083-1086 (2009), DOI: https://doi.org/10.1134/S1063783409050291.

    Article  CAS  Google Scholar 

  13. L. Myasnikova, N. Blashenkov, Y. Boiko, et al., Macromol. Symp., 242, No. 1, 182-192 (2006), DOI: https://doi.org/10.1002/masy.200651026.

    Article  CAS  Google Scholar 

  14. Y. E. Sakhno, V. G. Klimenko, D. I. Seliverstov, et al., Polym. Sci. B., 50, Nos. 5-6, 117-19 (2008).

    Google Scholar 

  15. S. A. Khatipov, R. N. Nurmukhametov, Y. E. Sakhno, et al., Nucl. Instrum. Methods Phys. Res. B., 269, No. 21, 2600-2604 (2011), https://doi.org/10.1016/j.nimb.2011.07.017.

    Article  CAS  Google Scholar 

  16. S. Khatipov, R. Nurmukhametov, Y. Sakhno, et al.,Radiat. Phys. Chem., 80, No. 3, 522-528 (2011), https://doi.org/10.1016/j.radphyschem.2010.11.012.

    Article  CAS  Google Scholar 

  17. D. A. Tomalia, B. Klajnert-Maculewicz, K. A. M. Johnson, et al., Prog. Polym. Sci., 90, 35-117 (2019).

    Article  CAS  Google Scholar 

  18. H. K. Zhang, Z. Zhao, P. R. McGonigal, et al., Mater. Today, 32, 275-292 (2020), https://doi.org/10.1016/j.mattod.2019.08.010.

    Article  CAS  Google Scholar 

  19. T. Yang, Y. Li, Z. Zhao, and W. Z. Yuan, Sci. China Chem., 66, No. 2, 367-387 (2023), https://doi.org/10.1007/s11426-022-1378-4.

    Article  CAS  Google Scholar 

  20. X. Chen, Y. Wang, Y. Zhang, and W. Yuan, Progr. Chem., 31, No. 11, 1560-1575 (2019), DOI: https://doi.org/10.7536/PC190812.

    Article  CAS  Google Scholar 

  21. K. Bauri, B. Saha, A. Banerjee, and P. De, Polymer Chem.,11, No. 46, 7293-7315 (2020), DOI: https://doi.org/10.1039/d0py01285h.

    Article  CAS  Google Scholar 

  22. W.-F. Lai, Mater. Today Chem., 23, 100712 (2022), DOI: https://doi.org/10.1016/j.mtchem.2021.100712.

  23. H. Zhang and B. Z. Tang, Handbook of Aggregation-Induced Emission, Y. Tang and B. Z. Tang, (eds.) John Wiley & Sons Ltd, Vol. 1, 153-175 (2022), https://doi.org/10.1002/9781119643098.ch5

  24. Z. Wang, H. Zhang, S. Li, et al., Top. Curr. Chem., 379, 14 (2021), https://doi.org/10.1007/s41061-021-00326-w.

    Article  CAS  Google Scholar 

  25. H. Zhang and B. Z. Tang, JACS Au., 1, No. 11, 1805-1814 (2021), https://doi.org/10.1021/jacsau.1c00311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. F. Wurthner, Angew. Chem. Int. Ed., 59, No. 34, 14192-14196 (2020), https://doi.org/10.1002/anie.202007525.

    Article  CAS  Google Scholar 

  27. R. Hu, G. Zhang, A. Qin, and B. Z. Tang, Pure Appl. Chem. 93, No. 12, 1383-1402 (2021), https://doi.org/10.1515/pac-2021-0503.

    Article  CAS  Google Scholar 

  28. V. M. Granchak, T. V. Sakhno, I. V. Korotkova, et al., Theor. Exp. Chem., 54, No. 3, 147-177 (2018), https://doi.org/10.1007/s11237-018-9558-6.

    Article  CAS  Google Scholar 

  29. C. L. Larson and S. A. Tucker, Appl. Spectrosc., 55, No. 6, 679-683 (2001).

    Article  CAS  Google Scholar 

  30. D. Wang and T. Imae, J. Am. Chem. Soc., 126, No. 41, 13204-13205 (2004), DOI: https://doi.org/10.1021/ja0454992.

    Article  CAS  PubMed  Google Scholar 

  31. W. I. Lee, Y. Bae, and A. J. Bard, J. Am. Chem. Soc., 126, No. 27, 8358-8359 (2004), https://doi.org/10.1021/ja0475914.

    Article  CAS  PubMed  Google Scholar 

  32. D. Wang, T. Imae, and M. Miki, J. Colloid Interface Sci., 306, 222-227 (2007), https://doi.org/10.1016/j.jcis.2006.10.025.

    Article  CAS  PubMed  Google Scholar 

  33. P. Liao, J. Huang, Y. Yan, and B. Z. Tang, Mater. Chem. Front., 5, No. 8, 6693-6717 (2021), https://doi.org/10.1039/D1QM00808K.

    Article  CAS  Google Scholar 

  34. T. V. Sakhno, Yu. E. Sakhno, and S. Ya. Kuchmiy, Theor. Exp. Chem., 58, No. 5, 297-327 (2022), https://doi.org/10.1007/s11237-023-09747-8.

    Article  CAS  Google Scholar 

  35. D. P. Chatterjee, M. Pakhira, and A. K. Nandi, ACS Omega, 5, No. 48, 30747-30766 (2020), https://doi.org/10.1021/acsomega.0c04700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. N. Jiang, D. Zhu, Z. Su, and M. R. Bryce, Mater. Chem. Front., 5, 60-75(2021), https://doi.org/10.1039/D0QM00626B.

    Article  CAS  Google Scholar 

  37. Z. Wang, H. Yuan, Y. Zhang, et al., J. Mater. Sci. Technol., 101, 264-284 (2022), 10.10167j.jmst.2021.04.039.

  38. C. Du, H. Chu, Z. Xiao, et al., Macromolecules, 53, No. 21, 9337-9344 (2020), https://doi.org/10.1021/acs.macromol.0c01792.

    Article  CAS  Google Scholar 

  39. W. Yu, Y. Wu, J. Chen, et al., RSC Adv., 6, No. 56, 51257-51263 (2016), https://doi.org/10.1039/C6RA06227J.

    Article  CAS  Google Scholar 

  40. J. Wang, L. Xu, S. Zhong, et al., Polymer Chem., 12, No. 48, 7048-7055 (2021), https://doi.org/10.1039/D1PY01033F.

    Article  CAS  Google Scholar 

  41. H. S. Kei, Clusterization-Induced Emission by Non-Conventional Luminescent Molecules: Thesis of M. Phil Chemistry, Hong Kong University of Science and Technology (2021).

    Book  Google Scholar 

  42. Y. Z. Wang, B. Xin, X. H. Chen, et al., Macromol. Rapid Commun., 39, No. 21, 1800528 (2018), https://doi.org/10.1002/marc.201800528.

    Article  CAS  Google Scholar 

  43. C. Sun, X. Jiang, B. Li, et al., ACS Sustain. Chem. Eng., 9, No. 14, 5166-5178 (2021), DOI: https://doi.org/10.1021/acssuschemeng.1c00250.

    Article  CAS  Google Scholar 

  44. Y.-L.Wang, K. Chen, H.-R. Li, et al.,Chin. Chem. Lett., 34, 107684 (2023), https://doi.org/10.1016/j.cclet.2022.07.027.

  45. Q. Zhou, Z. Wang, X. Dou, et al., Mater. Chem. Front., 3, No. 2, 257-264 (2019), https://doi.org/10.1039/C8QM00528A.

    Article  CAS  Google Scholar 

  46. X. Miao, T. Liu, C. Zhang, et al., Phys. Chem. Chem. Phys., 18, No. 6, 4295-4299 (2016), https://doi.org/10.1039/C5CP07134H.

    Article  CAS  PubMed  Google Scholar 

  47. W. Huang, H. Yan, S. Niu, et al., J. Polym. Sci. A., 55, No. 22, 3690-3696 (2017), DOI: https://doi.org/10.1002/pola.28754.

    Article  CAS  Google Scholar 

  48. Y. Du, Y. Feng, H. Yan, and L. Bai, J. Photochem. Photobiol. A., 364, 415-423 (2018), https://doi.org/10.1016/j.jphotochem.2018.06.031.

    Article  CAS  Google Scholar 

  49. X. Zhou, W. Luo, H. Nie, et al., J. Mater. Chem. C.,5, No. 19, 4775-4779 (2017), DOI: https://doi.org/10.1039/c7tc00868f.

    Article  CAS  Google Scholar 

  50. B. Zhao, S. Yang, X. Yong, and J. Deng, ACS Appl. Mater. Interfaces, 13, No. 49, 59320-59328(2021), https://doi.org/10.1021/acsami.1c19504.

    Article  CAS  Google Scholar 

  51. K. Chen, Y. Wang, B. Chu, et al., J. Mater. Chem. C., 10, No. 43, 16420-16429(2022), https://doi.org/10.1039/D2TC03754H.

    Article  CAS  Google Scholar 

  52. E. Zhao, J. W. Y. Lam, L. Meng, et al., Macromolecules, 48, No. 1, 64-71 (2015), https://doi.org/10.1021/ma502160w.

    Article  CAS  Google Scholar 

  53. Z. Guo, Y. Ru, W. B. Song, et al., Macromol. Rapid Commun., 38, No. 14, 1700099 (2017), https://doi.org/10.1002/marc.201700099.

    Article  CAS  Google Scholar 

  54. C. Hu, Z. Guo, Y. Ru, et al., Macromol. Rapid Commun., 39, No. 10, 1800035 (2018), https://doi.org/10.1002/marc.201800035.

    Article  CAS  Google Scholar 

  55. X. Chen, Z. He, F. Kausar, et al., Macromolecules, 51, No. 21, 9035-9042 (2018), https://doi.org/10.1021/acs.macromol.8b01743.

    Article  CAS  Google Scholar 

  56. X. Cheng, H. Hu, Y. Wu, et al., ACS Appl. Mater. Interfaces, 14, No. 50, 56185-56192 (2022), https://doi.org/10.1021/acsami.2c19121.

    Article  CAS  PubMed  Google Scholar 

  57. B. Chu, H. Zhang, L. Hu, et al., Angew. Chem., 61, E202114117(2022), https://doi.org/10.1002/anie.202114117.

    Article  CAS  Google Scholar 

  58. B. Chu, H. Zhang, K. Chen, et al., J. Am. Chem. Soc., 144, No. 33, 15286-1529(2022), https://doi.org/10.1021/jacs.2c05948.

    Article  CAS  PubMed  Google Scholar 

  59. Z. Xiong, B. Chu, et al., Aggregate, 3, No. 6, e278 (2022), https://doi.org/10.1002/agt2.278.

  60. Y. Du, H. Yan, W. Huang, et al., ACS Sustain. Chem. Eng., 5, No. 7, 6139-6147 (2017), https://doi.org/10.1021/acssuschemeng.7b01019.

    Article  CAS  Google Scholar 

  61. L. Xu, S. Zhong, Q. Meng, et al., Dyes Pigm., 194, 109558 (2021), https://doi.org/10.1016/j.dyepig.2021.109558.

  62. L. Xu, X. Liang, S. Zhong, et al., Colloids Surf. B., 206, 111961 (2021), https://doi.org/10.1016/j.colsurfb.2021.111961.

  63. X. Dou,Q.Zhou,X.Chen,etal.,Biomacromolecules,19,No.6,2014-2022(2018),DOI: https://doi.org/10.1021/acs.biomac.8b00123.

  64. Y. Y. Gong, Y. Q. Tan, J. Mei, et al., Sci. China Chem., 56, 1178 (2013), DOI: https://doi.org/10.1007/s11426-013-4923-8.

    Article  CAS  Google Scholar 

  65. W.-F. Lai and W.-T. Wong, Membranes, 12, No. 4, 437 (2022), https://doi.org/10.3390/membranes12040437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. L. Du, B. Jiang, X. Chen, et al., Chin. J. Polym. Sci., 37, No. 4, 409-415 (2019).

    Article  CAS  Google Scholar 

  67. J. Jiang, S. Lu, M. Liu, et al., Macromol. Rapid Commun., 42, No. 17, 2100321 (2021), https://doi.org/10.1002/marc.202100321.

    Article  CAS  Google Scholar 

  68. M. Li, X. Li, X. An, et al., Front. Chem., 7, 447 (2019), https://doi.org/10.3389/fchem.2019.00447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. W. F. Lai, E. M. Huang, W.-T. Wong, et al., Appl. Mater. Today, 21, 100876 (2020), https://doi.org/10.1016/j.apmt.2020.100876.

  70. W. Lai, W. Yip, and W. Wong, Adv. Mater. Technol., 6, No. 8, 2100120 (2021), D0I: https://doi.org/10.1002/admt.202100120.

  71. W. F. Lai, D. Y. Gui, M. G. Wong, et al., J. Drug Deliv. Sci. Technol., 63, 102428 (2021), https://doi.org/10.1016/j.jddst.2021.102428.

  72. Q. Zhou, M. Liu, C. Li, et al., Front. Chem., 10, 805252 (2022), DOI: https://doi.org/10.3389/fchem.2022.805252.

  73. Q. Zhou, B. Cao, C. Zhu, et al., Small, 12, 6586-6592 (2016), DOI: https://doi.org/10.1002/smll.201601545.

    Article  CAS  PubMed  Google Scholar 

  74. M. Kopec, M. Pikiel, and G. J. Vancso, Polym. Chem., 11, No. 3, 669-674 (2020), https://doi.org/10.1039/C9PY01213C.

    Article  CAS  Google Scholar 

  75. L. Pastor-Perez, Chen Y., Z. Shen, et al., Macromol. Rapid Commun., 28, No. 13, 1404-1409 (2007), DOI: https://doi.org/10.1002/marc.200700190.

  76. H. Wang, S Lan, Y. Zhang, et al., Macromol. Chem. Phys., 222, No. 13, 2100070 (2021), https://doi.org/10.1002/macp.202100070.

    Article  CAS  Google Scholar 

  77. M. N. Liu, W. G. Chen, H. J. Liu, and Y. Chen, Polymer, 172, 110-116 (2019).

    Article  CAS  Google Scholar 

  78. Y. Fan, Y.-Q. Cai, X.-B. Fu, et al., Polymer, 107, 154-162 (2016), https://doi.org/10.1016/j.polymer.2016.11.018.

    Article  CAS  Google Scholar 

  79. X. Chen, T. Yang, J. Lei, et al., J. Phys. Chem. B., 124, No. 40, 8928-8936 (2020), https://doi.org/10.1021/acs.jpcb.0c06606.

    Article  CAS  PubMed  Google Scholar 

  80. X. Yan, M. Wei, X. Miao, et al., Polym. Chem., 14, No. 5, 573-586 (2023), https://doi.org/10.1039/D2PY01173E.

    Article  CAS  Google Scholar 

  81. Q. Qi, Z. Xiao, Y. Wang, et al., Polymers, 14, No. 9, 1919 (2022), https://doi.org/10.3390/polym14091919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. L. Song, T. Zhu, L. Yuan, et al., Nat. Commun., 10, 1315 (2019), https://doi.org/10.1038/s41467-019-09218-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. S. Wang, D. Wu, S. Yang, et al., Mater. Chem. Front., 4, No. 4, 1198-1205 (2020), https://doi.org/10.1039/D0QM00018C.

    Article  CAS  Google Scholar 

  84. Z. Zhang, W. Yan, D. Dang, et al., Cell Rep. Phys. Sci., 3, No. 2, 100716 (2022), https://doi.org/10.1016/j.xcrp.2021.100716.

  85. H. Caoa, B. Lia, X. Jianga, et al., Chem. Eng. J., 399, 125867 (2020), 10.10167j.cej.2020.125867.

  86. C.-C. Chang, Y.-Y. Chen, H.-M. Chiang, et al., ACS Appl. Polym. Mater., 4, No. 10, 7790-7800 (2022), https://doi.org/10.1021/acsapm.2c01328.

    Article  CAS  Google Scholar 

  87. S. F. Shiau, T. Y. Juang, H. W. Chou, and M. Liang, Polymer, 54, No. 2, 623-630 (2013), https://doi.org/10.1016/j.polymer.2012.12.013.

    Article  CAS  Google Scholar 

  88. Y.-Y. Chen, S.-C. Fan, C.-C. Chang, et al., ACS Omega, 6, No. 48, 33159-33170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. H. Zhang, L. Qin, D. Cao, et al., J. Colloid Interface Sci., 632, 161-170 (2023), https://doi.org/10.1016/jjcis.2022.10.096.

    Article  CAS  PubMed  Google Scholar 

  90. X. Bin, W. Luo, W. Z. Yuan, and Y. Zhang, Acta Chim. Sinica., 74, No. 11, 935-941 (2016), DOI: https://doi.org/10.6023/A16080423.

    Article  CAS  Google Scholar 

  91. C. Shang, N. Wei, H. Zhuo, et al., J. Mater. Chem. C., 5, No. 32, 8082-8090 (2017), https://doi.org/10.1039/C7TC02381B.

    Article  CAS  Google Scholar 

  92. Q. Wang, X. Dou, X. Chen, et al., Angew. Chem. Int. Ed., 58, No. 36, 12667-12673 (2019), DOI: https://doi.org/10.1002/anie.201906226.

    Article  CAS  Google Scholar 

  93. L. Xu, X. Liang, S. Zhong, et al., ACS Sustain. Chem. Eng., 9, No. 36, 12043-12048 (2021), https://doi.org/10.1021/acssuschemeng.1c02865.

    Article  CAS  Google Scholar 

  94. R. F. Fernandes, G. T. Paganoto, and M. L. A. Temperini, Polym. Chem., 12, No. 43, 6319-6328 (2021), https://doi.org/10.1039/D1PY01104A.

    Article  CAS  Google Scholar 

  95. R. F. Fernandes, T. D. Z. Atvars, and M. L. A. Temperini, React. Funct. Polym., 182, 105483 (2023), https://doi.org/10.1016/j.reactfunctpolym.2022.105483.

  96. X. Guan, Y. Ding, S. Lai, and C. Li, Carbohydr. Polym., 291, 119633 (2022), https://doi.org/10.1016/j.carbpol.2022.119633.

  97. C. S. Camacho, M. Urgelles, H. Tomas, et al., J. Mater. Chem. B.,8, No. 45, 10314-10326(2020), https://doi.org/10.1039/D0TB01871F.

    Article  CAS  PubMed  Google Scholar 

  98. D. E. Igartua, D. E. Ybarra, D. M. Cabezas, et al.,J. Appl. Polym. Sci.,138, No. 29, 50700 (2021), https://doi.org/10.1002/app.50700.

    Article  CAS  Google Scholar 

  99. M. Studzian, L. Pulaski, D. A. Tomalia, and B. Klajnert-Maculewicz, J. Phys. Chem. C., 123, No. 29, 18007-18016 (2019), DOI: https://doi.org/10.1021/acs.jpcc.9b02725.

    Article  CAS  Google Scholar 

  100. M. Studzian, P. Dziaiak, L. Pulaski, et al., Molecules, 25, 4406 (2020), DOI: https://doi.org/10.3390/molecules25194406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. R. B. Wang, W. Z. Yuan, and X. Y. Zhu, Chin. J. Polym. Sci., 33, 680-687 (2015), https://doi.org/10.1007/s10118-015-1635-x.

    Article  CAS  Google Scholar 

  102. H. Lu, L. Feng, S. Li, et al., Macromolecules, 48, No. 3, 476-482 (2015), DOI: https://doi.org/10.1021/ma502352x.

    Article  CAS  Google Scholar 

  103. X. Chen, W. Luo, H. Ma, et al., Sci. China Chem., 61, No. 3, 351-359 (2018), DOI: https://doi.org/10.1007/s11426-017-9114-4.

    Article  CAS  Google Scholar 

  104. F. Chen, Y. Jin, J. Luo, et al., Int. J. Biol. Macromol., 226, 1387-1395 (2023), https://doi.org/10.1016/j.ijbiomac.2022.11.25.1.

    Article  CAS  PubMed  Google Scholar 

  105. L. Dong, W. Fu, P. Liu, et al., Macromolecules, 53, No. 3, 1054-1062 (2020), DOI: https://doi.org/10.1021/acs.macromol.9b02192.

    Article  CAS  Google Scholar 

  106. Q. Huang, J. Cheng, Y. Tang, et al., Macromol. Rapid Commun., 42, No. 14, 2100174 (2021), DOI: https://doi.org/10.1002/marc.202100174.

    Article  CAS  Google Scholar 

  107. L. Yuan, H. Yan, L. Bai, et al., Macromol. Rapid Commun., 40, No. 17, 1800658 (2019), https://doi.org/10.1002/MARC.201800658.

    Article  Google Scholar 

  108. Y. Du, T. Bai, H. Yan, et al., Polymer., 185,121771 (2019), https://doi.org/10.1016/J.POLYMER.2019.121771.

  109. Y. Du, H. Yan, S. Niu, et al., RSC Adv.,6, No. 91,88030-88037 (2016), https://doi.org/10.1039/C6RA19062F.

    Article  CAS  Google Scholar 

  110. L. Bai, H. Yan, L. Wang, et al., Macromol. Mater. Eng., 305, No. 6, 2000126 (2020), https://doi.org/10.1002/mame.202000126.

    Article  CAS  Google Scholar 

  111. X. Chen, X. Liu, J. Lei, et al., Mol. Syst. Des. Eng., 3, No. 2, 364-375 (2018), https://doi.org/10.1039/C7ME00118E.

    Article  CAS  Google Scholar 

  112. B. Liu, Z. Chen, B. Chu, et al., Adv. Photonics Res., 2, No. 5, 2000161 (2021), https://doi.org/10.1002/adpr.202000161.

    Article  CAS  Google Scholar 

  113. B. Liu, Y. L. Wang, W. Bai, et al., J. Mater. Chem. C., 5, No. 20, 4892-4898 (2017), https://doi.org/10.1039/C7TC01236E.

    Article  CAS  Google Scholar 

  114. N. Jiang, G.-F. Li, B.-H. Zhang, et al., Macromolecules, 51, No. 11, 4178-4184 (2018), https://doi.org/10.1021/acs.macromol.8b00715.

    Article  CAS  Google Scholar 

  115. Q. Zhou, J. Cui, T. Yang, et al., Sci. China Chem., 63, No. 6, 833-840 (2020), https://doi.org/10.1007/s11426-019-9704-y.

    Article  CAS  Google Scholar 

  116. Z. Zhao, X. Chen, Q. Wang, et al., Polym. Chem., 10, No. 26, 3639-3646(2019), https://doi.org/10.1039/C9PY00519F.

    Article  CAS  Google Scholar 

  117. W. Yu, Z. Wang, D. Yang, et al., RSC Adv., 6, No. 53, 47632-47636 (2016), https://doi.org/10.1039/C6RA00718J.

    Article  CAS  Google Scholar 

  118. Z. Zhang, H. Zhang, M. Kang, et al., Sci. China Chem., 64, No. 11, 1990-1998 (2021), https://doi.org/10.1007/s11426-021-1067-3.

    Article  CAS  Google Scholar 

  119. F. Kausar, T. Yang, Z. Zhao, et al.,Chem. Res. Chin. Univ., 37, 177-182 (2021), https://doi.org/10.1007/s40242-021-0414-1.

    Article  CAS  Google Scholar 

  120. M. Sun, C. Y. Hong, and C. Y. Pan, J. Am. Chem. Soc., 134, No. 51, 20581-20584 (2012), https://doi.org/10.1021/ja310236m.

    Article  CAS  PubMed  Google Scholar 

  121. P. Liu, W. Fu, P. Verwils, et al., Angew. Chem., 132, 8513-8517 (2020), https://doi.org/10.1002/ange.201916524.

    Article  Google Scholar 

  122. S. Niu, H. Yan, Z. Chen, et al., Polym. Chem.,7, No. 22, 3747-3755 (2016), DOI: https://doi.org/10.1039/c6py00654j.

    Article  CAS  Google Scholar 

  123. Y. Feng, T. Bai, H. Yan, et al., Macromolecules, 52, No. 8, 3075-3082 (2019), https://doi.org/10.1021/acs.macromol.9b00263.

    Article  CAS  Google Scholar 

  124. L. Bai, Y. Zhang, H. Yan, and X. Liu, Biomacromolecules, 23, No. 11, 4617-4628(2022), https://doi.org/10.1021/acs.biomac.2c00846.

    Article  CAS  PubMed  Google Scholar 

  125. L. Bai, H. Yan, T. Bai, et al., Biomacromolecules, 20, No. 11, 4230-4240 (2019), https://doi.org/10.1021/acs.biomac.9b01217.

    Article  CAS  PubMed  Google Scholar 

  126. L. Bai, P. Yang, L. Guo, et al., Biomacromolecules, 23, No. 3, 1041-1051 (2022), DOI: https://doi.org/10.1021/acs.biomac.1c01396.

    Article  CAS  PubMed  Google Scholar 

  127. S. Wang, X. Wang, S. Feng, et al., Inorg. Chem. Front., 9, No. 14, 3619-3626 (2022), https://doi.org/10.1039/D2QI00914E.

    Article  CAS  Google Scholar 

  128. L. Guo, L. Yan, Y. He, et al., Angew. Chem., 61, No. 29, e202204383 (2022), https://doi.org/10.1002/anie.202204383.

  129. B. Han, Q. Yan, Q. Liu, et al., Sep. Purif. Technol., 292, 121023 (2022), DOI: https://doi.org/10.1016/j.seppur.2022.121023.

  130. C. Zhang, S. Li, Z. Duan, and H. Wang, Anal. Chim. Acta., 1206, 339792 (2022), 10.10167j.aca.2022.339792.

  131. M. Pakhira, D. P. Chatterjee, D. Mallick, et al., Langmuir., 37, No. 16, 4953-4963 (2021), DOI: https://doi.org/10.1021/acs.langmuir.1c00310.

    Article  CAS  PubMed  Google Scholar 

  132. L. Xu, X. Zhang, S. Zhong, et al., Colloids Surf. A., 647, 129087 (2022), https://doi.org/10.1016/j.colsurfa.2022.129087.

  133. Y.-J. Tsai, C.-C. Hu, C.-C. Chu, and T. Imae, Biomacromolecules, 12, 4283-4290 (2011), DOI: https://doi.org/10.1021/bm201196p.

    Article  CAS  PubMed  Google Scholar 

  134. F. Abedi-Gaballu, G. Dehghan, M. Ghaffari, and M. R. Hamblin, Appl. Mater. Today, 12, 177-190 (2018), https://doi.org/10.1016/j.apmt.2018.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  135. W. Yang, C.-Y. Pan, M.-D. Luo, and H.-B. Zhang, Biomacromolecules, 11, No. 7, 1840-1846 (2010), DOI: https://doi.org/10.1021/bm100307d.

    Article  CAS  PubMed  Google Scholar 

  136. X. Liao, F.-J. Kahle, B. Liu, et al., Mater. Horizons., 7, No. 6, 1605-1612 (2020), https://doi.org/10.1039/D0MH00002G.

    Article  CAS  Google Scholar 

  137. J. Wu, W. Xin, Y. Wu, et al., Chem. Eng. J., 422, 130158 (2021), https://doi.org/10.1016/j.cej.2021.130158.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Sakhno.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 2, pp. 69-96, March-April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhno, T.V., Sakhno, Y.E. & Kuchmiy, S.Y. Clusteroluminescence of Unconjugated Polymers: A Review. Theor Exp Chem 59, 75–106 (2023). https://doi.org/10.1007/s11237-023-09768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-023-09768-3

Keywords

Navigation