Skip to main content
Log in

One-Step Fabrication of Magnetic Polymer/Montmorillonite Adsorbent for Highly Efficient Phenol Adsorption

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

Phenol contaminants are highly biotoxic and have become a global problem threatening the environment and human health. The objective of the present study was to develop a very efficient and easily recyclable adsorbent to remove phenol. A magnetic montmorillonite composite with organic co-intercalation was fabricated by a simple one-step co-precipitation method and exhibited excellent phenol removal. Two surfactants, cetyltrimethylammonium bromide (CTAB) and erucic acid amide (EA), were successfully co-intercalated into the interlayer of Ca-montmorillonite, and Fe3O4 nanoparticles were simultaneously decorated to obtain Fe3O4-CTAB/EA-montmorillonite composite (Fe3O4-C/E-Mnt). The morphology and structure of Fe3O4-C/E-Mnt composite were explored by using different techniques such as X-ray diffraction, Fourier-Transform infrared spectroscopy, X-ray photoelectron microscopy and so on. The adsorption capacity of Fe3O4-C/E-Mnt for phenol was investigated under various conditions including temperature, pH, contact time, various phenol concentrations, and adsorbent dosage. The results showed that Fe3O4-C/E-Mnt retained a lamellar structure of Ca-Mnt with mesopores. Its interlayer space, surface area, and pore volume were increased. The Fe3O4-C/E-Mnt composite exhibited a good adsorption capacity (31.45 mg·g–1) for phenol with a removal efficiency of 85.46% at optimized conditions. Moreover, the adsorbent still maintained 78.32% of the adsorption capacity after five cycles. The adsorption test data of Fe3O4-C/E-Mnt followed the pseudo-second order kinetic model and the Langmuir model. The adsorption was a spontaneous, exothermic, entropy-decreasing process, and a possible adsorption mechanism of Fe3O4-C/E-Mnt was finally proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelali, E. G., Jose, M. D., Elisenda, P. M., Oscar, M. G., Brahim, E. B., Jose, A. N., & Abdelhak, K. (2019). Mesoporous pyrophyllite–titania nanocomposites: Synthesis and activity in phenol photocatalytic degradation. Research on Chemical Intermediates, 45, 333–353.

    Article  Google Scholar 

  • Adebayo, M. A., & Areo, F. (2021). Removal of phenol and 4-nitrophenol from wastewater using a composite prepared from clay and Cocos nucifera shell: Kinetic, equilibrium and thermodynamic studies. Resources, Environment and Sustainability, 3, 100020.

    Article  Google Scholar 

  • An, X., Zhang, L., He, Y., Zhu, W., & Luo, Y. (2020). Kinetic, isotherm, and thermodynamic studies of Cr(VI) removal from aqueous solution using mesoporous silica materials prepared by fly ash. The Canadian Journal of Chemical Engineering, 98, 1825–1834.

    Article  Google Scholar 

  • Asnaoui, H., Dehmani, Y., Khalis, M., & Hachem, E. K. (2022). Adsorption of phenol from aqueous solutions by Na–bentonite: Kinetic, equilibrium and thermodynamic studies. International Journal of Environmental Analytical Chemistry, 102(13), 3043–3057.

    Article  Google Scholar 

  • Barraqué, F., Montes, M. L., Fernández, M. A., Candal, R., Sánchez, R. T., & Marco-Brown, J. L. (2021). Arsenate removal from aqueous solution by montmorillonite and organo-montmorillonite magnetic materials. Environmental Research, 192, 110247.

    Article  Google Scholar 

  • Battas, A., El Gaidoumi, A., Ksakas, A., & Kherbeche, A. (2019). Adsorption study for the removal of nitrate from water using local clay. The Scientific World Journal. https://doi.org/10.1155/2019/9529618

    Article  Google Scholar 

  • Bwatanglang, I. B., Magili, S. T., & Kaigamma, I. (2021). Adsorption of phenol over bio-based silica/calcium carbonate (CS-SiO2/CaCO3) nanocomposite synthesized from waste eggshells and rice husks. PeerJ Physical Chemistry, 3, e17.

    Article  Google Scholar 

  • Chang, J., Ma, J., Ma, Q., Zhang, D., Qiao, N., Hu, M., & Ma, H. (2016). Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Applied Clay Science, 119, 132–140.

    Article  Google Scholar 

  • Chen, C. M., Yao, X. Y., Li, Q. X., Wang, Q. H., Liang, J. H., Zhang, S. M., et al. (2018). Turf soil enhances treatment efficiency and performance of phenolic wastewater in an up-flow anaerobic sludge blanket reactor. Chemosphere, 204, 277–234.

    Article  Google Scholar 

  • Cheng, Z., Chen, Z., Li, J., Zuo, S., & Yang, P. (2018). Mesoporous silica-pillared clays supported nanosized CO3O4-CeO2 for catalytic combustion of toluene. Applied Surface Science, 459, 32–39.

    Article  Google Scholar 

  • Cheng, Y., Song, R., Wu, K., Peng, N., Yang, M., Luo, J., et al. (2020). The enhanced visible-light-driven antibacterial performances of PTCDI-PANI(Fe(iii)-doped) heterostructure. Journal of Hazardous Materials, 383, 121166.

    Article  Google Scholar 

  • Cottet, L., Almeida, C. A. P., Naidek, N., Viante, M. F., Lopes, M. C., & Debacher, N. A. (2014). Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Applied Clay Science, 95, 25–31.

    Article  Google Scholar 

  • Das, R., Sypu, V. S., Paumo, H. K., Bhaumik, M., Maharaj, V., & Maity, A. (2019). Silver decorated magnetic nanocomposite (Fe3O4-PPY-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Applied Catalysis b: Environmental, 244, 546–558.

    Article  Google Scholar 

  • Dehmani, Y., Sellaoui, L., Alghamdi, Y., Laine, J., Badawi, M., Amhoud, A., et al. (2020). Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. Journal of Molecular Liquids, 312, 113383.

    Article  Google Scholar 

  • Fan, T., Pan, D., & Zhang, H. (2011). Study on formation mechanism by monitoring the morphology and structure evolution of nearly monodispersed Fe3O4 submicroparticles with controlled particle sizes. Industrial & Engineering Chemistry Research, 50, 9009–9018.

    Article  Google Scholar 

  • Feng, G., Ma, J., Zhang, X., Zhang, Q., Xiao, Y., Ma, Q., & Wang, S. (2019). Magnetic natural composite Fe3O4-chitosan-bentonite for removal of heavy metals from acid mine drainage. Journal of Colloid and Interface Science, 538, 132–141.

    Article  Google Scholar 

  • Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift Für Physikalische Chemie, 57U, 385–470.

    Article  Google Scholar 

  • Gaidoumi, A. E., Benabdallah, A. C., Bali, B. E., & Kherbeche, A. (2018). Synthesis and characterization of zeolite HS using natural pyrophyllite as new clay source. Arabian Journal for Science and Engineering, 43(1), 191–197.

    Article  Google Scholar 

  • Gaidoumi, A. E., Loqman, A., Benadallah, A. C., Bali, B. E., & Kherbeche, A. (2019a). Co (II)-pyrophyllite as catalyst for phenol oxidative degradation: Optimization study using response surface methodology. Waste and Biomass Valorization, 10(4), 1043–1051.

    Article  Google Scholar 

  • Gaidoumi, A. E., Doña-Rodríguez, J. M., Melián, E. P., González-Díaz, O. M., Navío, J. A., Bali, B. E., & Kherbeche, A. (2019b). Catalytic efficiency of Cu-supported pyrophyllite in heterogeneous catalytic oxidation of phenol. Arabian Journal for Science and Engineering, 44(7), 6313–6325.

    Article  Google Scholar 

  • Gaidoumi, A. E., Doña-Rodríguez, J. M., Melián, E. P., González-Díaz, O. M., Bali, B. E., Navío, J. A., & Kherbeche, A. (2019c). Mesoporous pyrophyllite–titania nanocomposites: Synthesis and activity in phenol photocatalytic degradation. Research on Chemical Intermediates, 45(2), 333–353.

    Article  Google Scholar 

  • Gao, Y., Dai, Y., Zhang, H., Diao, E., Hou, H., & Dong, H. (2014). Effects of organic modification of montmorillonite on the performance of starch-based nanocomposite films. Applied Clay Science, 99, 201–206.

    Article  Google Scholar 

  • Gupta, K., & Khatri, O. P. (2019). Fast and efficient adsorptive removal of organic dyes and active pharmaceutical ingredient by microporous carbon: Effect of molecular size and charge. Chemical Engineering Journal, 378, 122218.

    Article  Google Scholar 

  • Hameed, B. H., & Rahman, A. A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials, 160, 576–581.

    Article  Google Scholar 

  • Han, S. J., Lee, H. I., Jeong, H. M., Kim, B. K., Raghu, A. V., & Reddy, K. R. (2014). Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. Journal of Macromolecular Science, Part B, 53, 1193–1204.

    Article  Google Scholar 

  • Han, J. L., Xia, X., Haider, M. R., Jiang, W. L., Tao, Y., Liu, M. J., et al. (2018). Functional graphene oxide membrane preparation for organics/inorganic salts mixture separation aiming at advanced treatment of refractory wastewater. Science of the Total Environment, 628, 261–270.

    Article  Google Scholar 

  • He, R., Yuan, X., Huang, Z., Wang, H., Jiang, L., Huang, J., Tan, M., & Li, H. (2019). Activated biochar with iron-loading and its application in removing cr (vi) from aqueous solution. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 579, 123642.

    Article  Google Scholar 

  • He, H. J., Xu, E. P., Qiu, Z. H., Wu, T., Wang, S. F., Lu, Y. H., & Chen, G. N. (2022). Phenol Adsorption Mechanism of Organically Modified Bentonite and Its Microstructural Changes. Sustainability, 14(3), 1318.

    Article  Google Scholar 

  • Ho, Z. H., & Adnan, L. A. (2021). Phenol removal from aqueous solution by adsorption technique using coconut shell activated carbon. Tropical Aquatic and Soil Pollution, 1(2), 98–107.

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  Google Scholar 

  • Jiang, D. H., Liu, Z. R., Fu, L. J., & Yang, H. M. (2020). Interfacial Chemical-Bond-Modulated Charge Transfer of Heterostructures for Improving Photocatalytic Performance. ACS Applied Materials & Interfaces, 12(8), 9872–9880.

    Article  Google Scholar 

  • Jiang, K., Liu, K., Peng, Q., & Zhou, M. Y. (2021). Adsorption of Pb (II) and Zn (II) ions on humus-like substances modified montmorillonite. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 631, 127706.

    Article  Google Scholar 

  • Kamiya, K., Hashimoto, K., & Nakanishi, S. (2012). Instantaneous one-pot synthesis of Fe-N-modified graphene as an efficient electrocatalyst for the oxygen reduction reaction in acidic solutions. Chemical Communications, 48, 10213–10215.

    Article  Google Scholar 

  • Karaca, S., Önal, E. Ç., Açışlı, Ö., & Khataee, A. (2021). Preparation of chitosan modified montmorillonite biocomposite for sonocatalysis of dyes: Parameters and degradation mechanism. Materials Chemistry and Physics, 260, 124125.

    Article  Google Scholar 

  • Kaur, R., & Bakshi, M. S. (2020). Mechanistic aspects of simultaneous extraction of silver and gold nanoparticles across aqueous–organic interfaces by surface active iron oxide nanoparticles. Langmuir, 36, 7505–7516.

    Article  Google Scholar 

  • Kong, Z., Li, L., Xue, Y., Yang, M., & Li, Y. Y. (2019). Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: A review. Journal of Cleaner Production, 231, 913–927.

    Article  Google Scholar 

  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids Part I Solids. Journal of the American chemical society, 38(11), 2221–2295.

    Article  Google Scholar 

  • Lawal, I. A., & Moodley, B. (2015). Synthesis, characterisation and application of imidazolium based ionic liquid modified montmorillonite sorbents for the removal of amaranth dye. RSC Advances, 5(76), 61913–61924.

    Article  Google Scholar 

  • Li, B., Mao, H., Li, X., Ma, W., & Liu, Z. (2009a). Synthesis of mesoporous silica-pillared clay by intragallery ammonia-catalyzed hydrolysis of tetraethoxysilane using quaternary ammonium surfactants as gallery templates. Journal of Colloid and Interface Science, 336, 244–249.

    Article  Google Scholar 

  • Li, J. M., Meng, X. G., Hu, C. W., & Du, J. (2009b). Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresource Technology, 100, 1168–1173.

    Article  Google Scholar 

  • Li, Y., Hu, X., Liu, X., Zhang, Y., Zhao, Q., Ning, P., & Tian, S. (2018). Adsorption behavior of phenol by reversible surfactant-modified montmorillonite: Mechanism, thermodynamics, and regeneration. Chemical Engineering Journal, 334, 1214–1221.

    Article  Google Scholar 

  • Li, X., Cui, K., Guo, Z., Yang, T., Cao, Y., Xiang, Y., et al. (2020). Heterogeneous fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods. Chemical Engineering Journal, 379, 122324.

    Article  Google Scholar 

  • Li, H. J., Yao, Y. T., Yang, X. Y., Zhou, X. S., Lei, R., & He, S. F. (2022). Degradation of phenol by photocatalysis using TiO2/montmorillonite composites under UV light. Environmental Science and Pollution Research, 29, 68293–68305.

    Article  Google Scholar 

  • Liu, X. T., & Yang, G. (2022). Mechanisms for cation exchange at the interfaces of montmorillonite nanoparticles: Insights for Pb2+ control. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 641, 128556.

    Article  Google Scholar 

  • Liu, Q. S., Zheng, T., Wang, P., Jiang, J. P., & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157, 348–356.

    Article  Google Scholar 

  • Liu, H., Chen, W., Liu, C., Liu, Y., & Dong, C. (2014). Magnetic mesoporous clay adsorbent: Preparation, characterization and adsorption capacity for atrazine. Microporous and Mesoporous Materials, 194, 72–78.

    Article  Google Scholar 

  • Liu, Y. B., Yu, L., Ong, C. N., & Xie, J. P. (2016). Nitrogen-doped graphene nanosheets as reactive water purification membranes. Nano Research, 9, 1983–1993.

    Article  Google Scholar 

  • Liu, R., Dai, L., & Si, C. L. (2018). Mussel-inspired cellulose-based nanocomposite fibers for adsorption and photocatalytic degradation. ACS Sustainable Chemistry, & Engineering, 6, 15756–15763.

    Article  Google Scholar 

  • Liu, X., Tian, J., Li, Y., Sun, N., Mi, S., Xie, Y., & Chen, Z. (2019). Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. Journal of Hazardous Materials, 373, 397–407.

    Article  Google Scholar 

  • Liu, S., Chen, M., Cao, X., Li, G., Zhang, D., Li, M., et al. (2020). Chromium (VI) removal from water using cetylpyridinium chloride (CPC)-modified montmorillonite. Separation and Purification Technology, 214, 116732.

    Article  Google Scholar 

  • Loqman, A., El Bali, B., El Gaidoumi, A., Boularbah, A., Kherbeche, A., & Lützenkirchen, J. (2022). The First Application of Moroccan Perlite as Industrial Dyes Removal. SILICON, 14, 2813–2838.

    Article  Google Scholar 

  • Luo, Z., Gao, M., Yang, S., & Yang, Q. (2015). Adsorption of phenols on reduced-charge montmorillonites modified by bispyridinium dibromides: Mechanism, kinetics and thermodynamics studies. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 482, 222–230.

    Article  Google Scholar 

  • Ma, X. W., Li, S. Y., Hou, Y., Lv, H., Li, J. J., Cheng, T. Y., et al. (2022). Adsorption of low-concentration organic pollutants from typical coal-fired power plants by activated carbon injection. Process Safety and Environmental Protection, 159, 1174–1183.

    Article  Google Scholar 

  • Maleki, S. T., & Sadati, S. J. (2022). Synthesis and investigation of hyperthermia properties of Fe3O4/HNTs magnetic nanocomposite. Inorganic Chemistry Communications, 145, 110000.

    Article  Google Scholar 

  • Mandal, A., Mukhopadhyay, P., & Das, S. K. (2019). The study of adsorption efficiency of rice husk ash for removal of phenol from wastewater with low initial phenol concentration. SN Applied Sciences, 1(2), 1–13.

    Article  Google Scholar 

  • Mao, H., Liu, X., Yang, J., Li, B., Chen, Q., & Zhong, J. (2014). Fabrication of magnetic silica-pillared clay (spc) nanocomposites with ordered interlayer mesoporous structure for controlled drug release. Microporous and Mesoporous Materials, 184, 169–176.

    Article  Google Scholar 

  • Mehdi, A. K., Susmita, S. G., Krishna, G. B., & Dhruba, C. (2022). Montmorillonite and modified montmorillonite as adsorbents for removal of watersoluble organic dyes: A review on current status of the art. Inorganic Chemistry Communications, 143, 109686.

    Article  Google Scholar 

  • Minisy, I. M., Salahuddin, N. A., & Ayad, M. M. (2021). Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Applied Clay Science, 203, 105993.

    Article  Google Scholar 

  • Nourmoradi, H., Nikaeen, M., & Khiadani, M. (2012). Removal of benzene, toluene, ethylbenzene and xylene (btex) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 191, 341–348.

    Article  Google Scholar 

  • Papazi, A., Karamanli, M., & Kotzabasis, K. (2019). Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus—the biodegradation strategy of microalgae. Journal of Biotechnology, 296, 61–68.

    Article  Google Scholar 

  • Park, K. W., Jung, J. H., Seo, H. J., & Kwon, O. Y. (2009). Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane. Microporous and Mesoporous Materials, 121, 219–225.

    Article  Google Scholar 

  • Park, Y., Sun, Z., Ayoko, G. A., & Frost, R. L. (2014). Bisphenol A sorption by organo-montmorillonite: Implications for the removal of organic contaminants from water. Chemosphere, 107, 249–256.

    Article  Google Scholar 

  • Piumetti, M., Fino, D., & Russo, N. (2015). Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCS. Applied Catalysis B: Environmental, 163, 277–287.

    Article  Google Scholar 

  • Rahmani, S., Zeynizadeh, B., & Karami, S. (2020). Removal of cationic methylene blue dye using magnetic and anionic-cationic modified montmorillonite: Kinetic, isotherm and thermodynamic studies. Applied Clay Science, 184, 105391.

    Article  Google Scholar 

  • Rashidi, R., Omidi-Khaniabadi, Y., & Ghaderpoori, M. (2023). Adsorption of Eriochrome black-T from aqueous environment by raw Montmorillonite. International Journal of Environmental Analytical Chemistry, 103(11), 2601–2615.

    Article  Google Scholar 

  • Reddy, K. R., Gomes, V. G., & Hassan, M. (2014). Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Materials Research Express, 1, 015012.

    Article  Google Scholar 

  • Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., & Li, L. (2014). Adsorption of arsenic on modified montmorillonite. Applied Clay Science, 97, 17–23.

    Article  Google Scholar 

  • Ren, H. P., Tian, S. P., Zhu, M., Zhao, Y. Z., Li, K. X., Ma, Q., et al. (2018). Modification of montmorillonite by gemini surfactants with different chain lengths and its adsorption behavior for methyl orange. Applied Clay Science, 151, 29–36.

    Article  Google Scholar 

  • Sanqin, W., Zepeng, Z., Yunhua, W., Libing, L., & Jiansheng, Z. (2014). Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites. Materials Research Bulletin, 59, 59–64.

    Article  Google Scholar 

  • Silvano, J., Mello, J. M., Silva, L., Riella, H., & Fiori, M. (2017). Erucamide-nanoclay systems obtained by intercalation process. Materials Science Forum, 899, 36–41.

    Article  Google Scholar 

  • Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619.

    Article  Google Scholar 

  • Su, J., Lin, H. F., Wang, Q. P., Xie, Z. M., & Chen, Z. L. (2011). Adsorption of phenol from aqueous solutions by organomontmorillonite. Desalination, 269(1–3), 163–169.

    Article  Google Scholar 

  • Tamang, M., & Paul, K. K. (2022). Adsorptive treatment of phenol from aqueous solution using chitosan/calcined eggshell adsorbent: Optimization of preparation process using Taguchi statistical analysis. Journal of the Indian Chemical Society, 99(1), 100251.

    Article  Google Scholar 

  • Tong, D. S., Wu, C. W., Adebajo, M. O., Jin, G. C., Yu, W. H., Ji, S. F., & Zhou, C. H. (2018). Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites. Applied Clay Science, 161, 256–264.

    Article  Google Scholar 

  • Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462.

    Article  Google Scholar 

  • Vanzetti, L., Pasquardini, L., Potrich, C., Vaghi, V., Battista, E., Causa, F., & Pederzolli, C. (2016). XPS analysis of genomic DNA adsorbed on pei-modified surfaces. Surface and Interface Analysis, 48, 611–615.

    Article  Google Scholar 

  • Wu, P., Wu, W., Li, S., Xing, N., Zhu, N., Li, P., et al. (2009). Removal of Cd2+ from aqueous solution by adsorption using fe-montmorillonite. Journal of Hazardous Materials, 169, 824–830.

    Article  Google Scholar 

  • Xia, Q., Huang, B., Yuan, X., Wang, H., Wu, Z., Jiang, L., et al. (2018). Modified stannous sulfide nanoparticles with metal-organic framework: Toward efficient and enhanced photocatalytic reduction of chromium (vi) under visible light. Journal of Colloid and Interface Science, 530, 481–492.

    Article  Google Scholar 

  • Xiong, Z., Li, S., & Xia, Y. (2016). Highly stable water-soluble magnetic nanoparticles synthesized through combined co-precipitation, surface-modification, and decomposition of a hybrid hydrogel. New Journal of Chemistry, 40, 9951–9957.

    Article  Google Scholar 

  • Xu, W., Chen, Y., Zhang, W., & Li, B. (2019). Fabrication of graphene oxide/bentonite composites with excellent adsorption performances for toluidine blue removal from aqueous solution. Advanced Powder Technology, 30, 493–501.

    Article  Google Scholar 

  • Yao, Y., Miao, S., Liu, S., Ma, L. P., Sun, H., & Wang, S. (2012). Synthesis, characterization, and adsorption properties of magnetic Fe3O4-graphene nanocomposite. Chemical Engineering Journal, 184, 326–332.

    Article  Google Scholar 

  • Yousef, R. I., & El-EswedAla’a H, B. (2011). Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies. Chemical Engineering Journal, 171(3), 1143–1149.

    Article  Google Scholar 

  • Zhang, Y., Li, K., & Liao, J. (2020). Facile synthesis of reduced-graphene-oxide/rare-earth-metal-oxide aerogels as a highly efficient adsorbent for rhodamine-b. Applied Surface Science, 504, 144377.

    Article  Google Scholar 

  • Zhang, J. C., Qin, L., Yang, Y. Z., & Liu, X. G. (2021). Porous carbon nanospheres aerogel based molecularly imprinted polymer for efficient phenol adsorption and removal from wastewater. Separation and Purification Technology, 274, 119029.

    Article  Google Scholar 

  • Zhou, F., Huang, J., & Man, R. (2018). Hydrogen bonding of acylamino-modified macroporous cross-linked polystyrene resins with phenol. Journal of Chemical & Engineering Data, 63, 1917–1924.

    Article  Google Scholar 

  • Zhou, C. H., Cun, J. L., Gates, W. P., Zhu, T. T., & Wei, H. Y. (2019). Co-intercalation of organic cations/amide molecules into montmorillonite with tunable hydrophobicity and swellability. Applied Clay Science, 179, 105157.

    Article  Google Scholar 

  • Zhu, J., Wang, T., Zhu, R., Ge, F., Yuan, P., & He, H. (2011). Expansion characteristics of organo montmorillonites during the intercalation, aging, drying and rehydration processes: Effect of surfactant/CEC ratio. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 384, 401–407.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Program on Key Basic Research Project of China (No. 2019YFC0408604-4), Shanxi Key Research and Development Program (Social Development, 201903D321053), the Natural Science Foundation of Shanxi Province (No. 201901D111110), Shanxi Scholarship Council of China (No. HGKY2019017), and Shanxi Provincial Foundation for Leaders of Disciplines in Science, China.

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianchao Ma or Xin Wang.

Ethics declarations

Competing of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Pei Geng and Haidong Hao contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, P., Hao, H., Guo, J. et al. One-Step Fabrication of Magnetic Polymer/Montmorillonite Adsorbent for Highly Efficient Phenol Adsorption. Clays Clay Miner. 71, 377–396 (2023). https://doi.org/10.1007/s42860-023-00241-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-023-00241-9

Keywords

Navigation