Skip to main content

Advertisement

Log in

Konjac glucomannan attenuate high-fat diet-fed obesity through enhancing β-adrenergic-mediated thermogenesis in inguinal white adipose tissue in mice

  • Research
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Konjac glucomannan (KGM) has been reported to prevent high-fat diet-induced obesity, and we study investigated whether dietary supplementation with KGM can prevent obesity by increasing energy expenditure in inguinal white adipose tissue (iWAT) of high-fat diet (HF) -fed mice. Weaned mice fed the control diet (Con), HF, or HF plus KGM (8%, w/w, HFK) were divided into three groups. The results showed that 10-week supplementation with KGM significantly reduced partial adipose tissue weight and body weight, and improved glucose tolerance. Compared to the HF group, plasma lipid concentrations in the HFK group were greatly decreased to the control level. Moreover, transcriptomic research has shown that genes that are mainly associated with energy and lipid metabolism are significantly altered in iWAT. Mechanistically, KGM stimulated thermogenesis by promoting the expression of uncoupling protein-1 (UCP1) and the β3-adrenergic receptor (ADR3β). Taken together, our results suggest that dietary supplementation with konjac glucomannan can effectively alleviate obesity induced by a high-fat diet by activating ADR3β-mediated iWAT thermogenesis.

Graphical abstract

Dietary supplementation with KGM can effectively alleviate high fat diet- induced obesity mice by via activating ADR3β-mediated thermogenesis of iWAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data underlying this study are available at https://www.ncbi.nlm.nih.gov/sra/PRJNA852679.

References

  1. Faour, M., Magnan, C., Gurden, H., Martin, C.: Olfaction in the context of obesity and diabetes: Insights from animal models to humans. Neuropharmacology 206, 108923 (2022). https://doi.org/10.1016/j.neuropharm.2021.108923

    Article  CAS  PubMed  Google Scholar 

  2. Piché, M.E., Tchernof, A., Després, J.P.: Obesity phenotypes, diabetes, and cardiovascular diseases. Circ. Res. 126(11), 1477–1500 (2020). https://doi.org/10.1161/circresaha.120.316101

    Article  PubMed  Google Scholar 

  3. Herz, C.T., Kiefer, F.W.: Adipose tissue browning in mice and humans. J. Endocrinol. 241(3), R97-r109 (2019). https://doi.org/10.1530/joe-18-0598

    Article  CAS  PubMed  Google Scholar 

  4. Reyes-Farias, M., Fos-Domenech, J., Serra, D., Herrero, L., Sánchez-Infantes, D.: White adipose tissue dysfunction in obesity and aging. Biochem. Pharmacol. 192, 114723 (2021). https://doi.org/10.1016/j.bcp.2021.114723

    Article  CAS  PubMed  Google Scholar 

  5. Lawan, A., Bennett, A.M.: Mitogen-activated protein kinase regulation in hepatic metabolism. Trends Endocrinol. Metab. 28(12), 868–878 (2017). https://doi.org/10.1016/j.tem.2017.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lawan, A., Zhang, L., Gatzke, F., Min, K., Jurczak, M.J., Al-Mutairi, M., Richter, P., Camporez, J.P.G., Couvillon, A., Pesta, D., Roth Flach, R.J., Shulman, G.I., Bennett, A.M.: Hepatic Mitogen-activated protein kinase phosphatase 1 selectively regulates glucose metabolism and energy homeostasis. Mol. Cell. Biol. 35(1), 26–40 (2023). https://doi.org/10.1128/mcb.00503-14

    Article  Google Scholar 

  7. Mottillo, E.P., Balasubramanian, P., Lee, Y.H., Weng, C., Kershaw, E.E., Granneman, J.G.: Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation. J. Lipid Res. 55(11), 2276–2286 (2014). https://doi.org/10.1194/jlr.M050005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suárez, J., Rivera, P., Arrabal, S., Crespillo, A., Serrano, A., Baixeras, E., Pavón, F.J., Cifuentes, M., Nogueiras, R., Ballesteros, J., Dieguez, C., Rodríguez de Fonseca, F.: Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat. Dis. Models Mech. 7(1), 129–141 (2014). https://doi.org/10.1242/dmm.013110

    Article  CAS  Google Scholar 

  9. Chen, C.C., Kuo, C.H., Leu, Y.L., Wang, S.H.: Corylin reduces obesity and insulin resistance and promotes adipose tissue browning through SIRT-1 and beta3-AR activation. Pharmacol. Res. 164, 105291 (2021). https://doi.org/10.1016/j.phrs.2020.105291

    Article  CAS  PubMed  Google Scholar 

  10. Liu, P., Huang, S., Ling, S., Xu, S., Wang, F., Zhang, W., Zhou, R., He, L., Xia, X., Yao, Z., Fan, Y., Wang, N., Hu, C., Zhao, X., Tucker, H.O., Wang, J., Guo, X.: Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating beta3-AR desensitization. Nat. Commun. 10(1), 5070 (2019). https://doi.org/10.1038/s41467-019-12988-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calvani, R., Leeuwenburgh, C., Marzetti, E.: Brown adipose tissue and the cold war against obesity. Diabetes 63(12), 3998–4000 (2014). https://doi.org/10.2337/db14-1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeon, H.J., Choi, D.K., Choi, J., Lee, S., Lee, H., Yu, J.H., Min, S.H.: D-mannitol induces a brown fat-like phenotype via a beta3-adrenergic receptor-dependent mechanism. Cells 10(4) (2021). https://doi.org/10.3390/cells10040768

  13. Wang, Y., Zhao, A., Du, H., Liu, Y., Qi, B., Yang, X.: Theabrownin from Fu Brick Tea Exhibits the thermogenic function of adipocytes in high-fat-diet-induced obesity. J. Agric. Food Chem. 69(40), 11900–11911 (2021). https://doi.org/10.1021/acs.jafc.1c04626

    Article  CAS  PubMed  Google Scholar 

  14. Ishibashi, J., Seale, P.: Medicine. Beige can be slimming. Science (New York, N.Y.) 328(5982), 1113–1114 (2010). https://doi.org/10.1126/science.1190816

    Article  CAS  PubMed  Google Scholar 

  15. Petrovic, N., Walden, T.B., Shabalina, I.G., Timmons, J.A., Cannon, B., Nedergaard, J.: Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285(10), 7153–7164 (2010). https://doi.org/10.1074/jbc.M109.053942

    Article  CAS  PubMed  Google Scholar 

  16. Lee, D.H., Park, S.H., Lee, E., Seo, H.D., Ahn, J., Jang, Y.J., Ha, T.Y., Im, S.S., Jung, C.H.: Withaferin A exerts an anti-obesity effect by increasing energy expenditure through thermogenic gene expression in high-fat diet-fed obese mice. Phytomed. Int. J. Phytother. Phytopharmacol. 82, 153457 (2021). https://doi.org/10.1016/j.phymed.2020.153457

    Article  CAS  Google Scholar 

  17. Xia, B., Shi, X.C.: Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biol. 18(3), e3000688 (2020). https://doi.org/10.1371/journal.pbio.3000688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang, Y., Li, Y., Du, Y., Guo, L., Chen, M., Huang, X., Yang, F., Hong, J., Kong, X.: Konjaku flour reduces obesity in mice by modulating the composition of the gut microbiota. Int. J. Obes. 43(8), 1631–1643 (2019). https://doi.org/10.1038/s41366-018-0187-x

    Article  CAS  Google Scholar 

  19. Wu, W.T., Chen, H.L.: Konjac glucomannan and inulin systematically modulate antioxidant defense in rats fed a high-fat fiber-free diet. J. Agric. Food Chem. 59(17), 9194–9200 (2011). https://doi.org/10.1021/jf202060p

    Article  CAS  PubMed  Google Scholar 

  20. Chen, H., Nie, Q., Hu, J., Huang, X., Zhang, K., Pan, S., Nie, S.: Hypoglycemic and Hypolipidemic Effects of Glucomannan Extracted from Konjac on Type 2 Diabetic Rats. J. Agric. Food Chem. 67(18), 5278–5288 (2019). https://doi.org/10.1021/acs.jafc.9b01192

    Article  CAS  PubMed  Google Scholar 

  21. Zhai, X., Lin, D., Zhao, Y., Li, W., Yang, X.: Effects of Dietary Fiber Supplementation on Fatty Acid Metabolism and Intestinal Microbiota Diversity in C57BL/6J Mice Fed with a High-Fat Diet. J. Agric. Food Chem. 66(48), 12706–12718 (2018). https://doi.org/10.1021/acs.jafc.8b05036

    Article  CAS  PubMed  Google Scholar 

  22. Zhai, X., Lin, D., Zhao, Y., Li, W., Yang, X.: Enhanced anti-obesity effects of bacterial cellulose combined with konjac glucomannan in high-fat diet-fed C57BL/6J mice. Food Funct. 9(10), 5260–5272 (2018). https://doi.org/10.1039/c8fo01211c

    Article  CAS  PubMed  Google Scholar 

  23. Hong, J., Jia, Y., Pan, S., Jia, L., Li, H., Han, Z., Cai, D., Zhao, R.: Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget 7(35), 56071–56082 (2016). https://doi.org/10.18632/oncotarget.11267

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jia, Y., Hong, J.: Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β(3) -adrenergic receptor activation in high-fat diet-induced obese mice. Exp. Physiol. 102(2), 273–281 (2017). https://doi.org/10.1113/ep086114

    Article  PubMed  Google Scholar 

  25. Jokinen, E.: Obesity and cardiovascular disease. Minerva Pediatr. 67(1), 25–32 (2015)

    CAS  PubMed  Google Scholar 

  26. Tung, Y.T., Chen, H.L., Wu, H.S., Ho, M.H., Chong, K.Y., Chen, C.M.: Kefir peptides prevent hyperlipidemia and obesity in high-fat-diet-induced obese rats via lipid metabolism modulation. Mol. Nutr. Food Res. 62(3) (2018). https://doi.org/10.1002/mnfr.201700505

  27. Bray, G.A., Heisel, W.E., Afshin, A., Jensen, M.D., Dietz, W.H., Long, M., Kushner, R.F., Daniels, S.R., Wadden, T.A., Tsai, A.G., Hu, F.B., Jakicic, J.M., Ryan, D.H., Wolfe, B.M., Inge, T.H.: The science of obesity management: An endocrine society scientific statement. Endocr. Rev. 39(2), 79–132 (2018). https://doi.org/10.1210/er.2017-00253

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hill, J.O., Wyatt, H.R., Peters, J.C.: Energy balance and obesity. Circulation 126(1), 126–132 (2012). https://doi.org/10.1161/circulationaha.111.087213

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Z., Zhang, H., Li, B., Meng, X., Wang, J., Zhang, Y., Yao, S., Ma, Q., Jin, L., Yang, J., Wang, W., Ning, G.: Berberine activates thermogenesis in white and brown adipose tissue. Nat. Commun. 5, 5493 (2014). https://doi.org/10.1038/ncomms6493

    Article  CAS  PubMed  Google Scholar 

  30. Guo, Y.Y., Li, B.Y., Peng, W.Q., Guo, L., Tang, Q.Q.: Taurine-mediated browning of white adipose tissue is involved in its anti-obesity effect in mice. J. Biol. Chem. 294(41), 15014–15024 (2019). https://doi.org/10.1074/jbc.RA119.009936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Milton-Laskíbar, I., Gómez-Zorita, S., Arias, N., Romo-Miguel, N., González, M., Fernández-Quintela, A.: Effects of resveratrol and its derivative pterostilbene on brown adipose tissue thermogenic activation and on white adipose tissue browning process. J. Physiol. Biochem. 76(2), 269–278 (2020). https://doi.org/10.1007/s13105-020-00735-3

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Y., Chen, J., Tan, Q., Deng, X., Tsai, P.J., Chen, P.H., Ye, M., Guo, J., Su, Z.: Nondigestible oligosaccharides with anti-obesity effects. J. Agric. Food Chem. 68(1), 4–16 (2020). https://doi.org/10.1021/acs.jafc.9b06079

    Article  CAS  PubMed  Google Scholar 

  33. Betz, M.J., Enerbäck, S.: Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat. Rev. Endocrinol. 14(2), 77–87 (2018). https://doi.org/10.1038/nrendo.2017.132

    Article  CAS  PubMed  Google Scholar 

  34. Hussain, M.F., Roesler, A., Kazak, L.: Regulation of adipocyte thermogenesis: mechanisms controlling obesity. FEBS J. 287(16), 3370–3385 (2020). https://doi.org/10.1111/febs.15331

    Article  CAS  PubMed  Google Scholar 

  35. Chen, S., Liu, X., Peng, C., Tan, C., Sun, H., Liu, H., Zhang, Y., Wu, P., Cui, C., Liu, C., Yang, D., Li, Z., Lu, J., Guan, J., Ke, X., Wang, R., Bo, X., Xu, X., Han, J., Liu, J.: The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metab. 33(3), 565-580.e567 (2021). https://doi.org/10.1016/j.cmet.2021.02.007

    Article  CAS  PubMed  Google Scholar 

  36. Kajimura, S.: Promoting brown and beige adipocyte biogenesis through the PRDM16 pathway. Int. J. Obes. Suppl. 5(Suppl 1), S11-14 (2015). https://doi.org/10.1038/ijosup.2015.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feldmann, H.M., Golozoubova, V., Cannon, B., Nedergaard, J.: UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9(2), 203–209 (2009). https://doi.org/10.1016/j.cmet.2008.12.014

    Article  CAS  PubMed  Google Scholar 

  38. Cypess, A.M., Weiner, L.S., Roberts-Toler, C., Franquet Elía, E., Kessler, S.H., Kahn, P.A., English, J., Chatman, K., Trauger, S.A., Doria, A., Kolodny, G.M.: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21(1), 33–38 (2015). https://doi.org/10.1016/j.cmet.2014.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harms, M., Seale, P.: Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19(10), 1252–1263 (2013). https://doi.org/10.1038/nm.3361

    Article  CAS  PubMed  Google Scholar 

  40. Collins, S.: β-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front. Endocrinol. 2, 102 (2011). https://doi.org/10.3389/fendo.2011.00102

    Article  Google Scholar 

  41. Yan, L., Xiong, C., Qu, H., Liu, C., Chen, W., Zheng, L.: Non-destructive determination and visualisation of insoluble and soluble dietary fibre contents in fresh-cut celeries during storage periods using hyperspectral imaging technique. Food Chem. 228, 249–256 (2017). https://doi.org/10.1016/j.foodchem.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  42. Gill, S.K., Rossi, M., Bajka, B., Whelan, K.: Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18(2), 101–116 (2021). https://doi.org/10.1038/s41575-020-00375-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (41977112) and Natural Science Foundation of Jiangsu Higher Education Institutions of China (20KJB416007).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.H. and Y.K.; Methodology, J.H.; Validation, J.H., Y.S. and J.C.; Formal Analysis, M.S.; Investigation, Y.Z.; J.B.; Resources, M.M. and Q.R.; Data Curation, J.H.; Writing – Original Draft Preparation, J.H.; Writing – Review & Editing, J.H. and Y.K.; Visualization, J.H.; Supervision, Y.K.; Project Administration, Y.K.

Corresponding author

Correspondence to Yijun Kang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We certify that the animal experiments were approved by the Animal Ethics Committee of Yancheng Teachers University (YCTU18060) and were conducted in accordance with the Institutional Animal Reaearch Committee Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health, 8th Edition. 

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 256 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Shi, Y., Chen, J. et al. Konjac glucomannan attenuate high-fat diet-fed obesity through enhancing β-adrenergic-mediated thermogenesis in inguinal white adipose tissue in mice. Glycoconj J 40, 575–586 (2023). https://doi.org/10.1007/s10719-023-10131-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10131-w

Keywords

Navigation