Skip to main content
Log in

Metabolite profiling of Drynariae Rhizoma using 1H NMR and HPLC coupled with multivariate statistical analysis

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Drynariae Rhizoma has been used to treat bone diseases and kidney deficiency in traditional medicine. Recently its aqueous extract was reported to enhance memory function. Although the Japanese standards for non-Pharmacopoeial crude drugs 2022 prescribed Drynaria roosii as the botanical origin, some counterfeits and both raw and stir-fired crude drugs are available in markets. To distinguish Drynariae Rhizoma derived from D. roosii appropriately from others and verify the validity of uses of stir-fried ones, 1H NMR-based metabolite profiling coupled with HPLC were performed. Raw samples derived from D. roosii contained naringin (1), neoeriocitrin (2), 5,7-dihydroxychromone-7-O-neohesperidoside (3), caffeic acid 4-O-β-d-glucoside (4), protocatechuic acid (5), trans-p-coumaric acid 4-O-β-d-glucoside (6), and kaempferol 3-O-α-l-rhamnoside 7-O-β-d-glucoside (8). Stir-fried samples were characterized by presence of 5-hydroxymethyl-2-furaldehyde (13), and were divided into two types; one possessing similar composition to raw samples (Type I) and another without above components except 5 (Type II). Quantitative analyses using qHNMR and HPLC, followed by principal component analysis demonstrated that the raw samples had higher contents of 1 (0.93–9.86 mg/g), 2 (0.74–7.59 mg/g), 3 (0.05–2.48 mg/g), 4 (0.27–2.51 mg/g), 6 (0.14–1.26 mg/g), and 8 (0.04–0.52 mg/g), and Type II had a higher content of 5 (0.84–1.32 mg/g). The counterfeit samples derived from Araiostegia divaricata var. formosana were characterized by higher content of ( −)-epicatechin 3-O-β-d-allopyranoside (10) (1.44–11.49 mg/g) without 1 and 2. These results suggested that Drynariae Rhizoma samples derived from other botanical origins and Type II stir-fried samples cannot substitute for D. roosii rhizome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chinese Pharmacopoeia Commission (2020) Pharmacopoeia of the People’s Republic of China (2020 Edition) Chinese version

  2. Drynaria roosii Nakaike. http://www.worldfloraonline.org/taxon/wfo-0000748038#synonyms. Accessed 15 Mar 2023

  3. Yonekura K, Kajita T (2003) BG Plants: Japanese name-Scientific name Index (YList). http://ylist.info. Accessed 15 Mar 2023

  4. Li LN, Zeng Z, Cai GP (2011) Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1. Phytomedicine 18:985–989. https://doi.org/10.1016/j.phymed.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  5. Wang XL, Wang NL, Zhang Y, Gao H, Pang WY, Wong MS, Zhang G, Qin L, Yao XS (2008) Effects of eleven flavonoids from the osteoprotective fraction of Drynaria fortunei (Kunze) J. Sm. on osteoblastic proliferation using an osteoblast-like cell line. Chem Pharm Bull (Tokyo) 56:46–51. https://doi.org/10.1248/cpb.56.46

    Article  CAS  PubMed  Google Scholar 

  6. Wang XL, Zhen LZ, Zhang G, Wong MS, Qin L, Yao XS (2011) Osteogenic effects of flavonoid aglycones from an osteoprotective fraction of Drynaria fortunei—An in vitro efficacy study. Phytomedicine 18:868–872. https://doi.org/10.1016/j.phymed.2011.01.022

    Article  CAS  PubMed  Google Scholar 

  7. Wang XL, Wang NL, Gao H, Zhang G, Qin L, Wong MS, Yao XS (2010) Phenylpropanoid and flavonoids from osteoprotective fraction of Drynaria fortunei. Nat Prod Res 24:1206–1213. https://doi.org/10.1080/14786410902991860

    Article  CAS  PubMed  Google Scholar 

  8. Chang EJ, Lee WJ, Cho SH, Choi SW (2003) Proliferative effects of flavan-3-ols and propelargonidins from rhizomes of Drynaria fortunei on MCF-7 and osteoblastic cells. Arch Pharm Res 26:620–630. https://doi.org/10.1007/bf02976711

    Article  CAS  PubMed  Google Scholar 

  9. Qiao X, Lin X, Liang Y, Dong J, Guo D, Ye M (2014) Comprehensive chemical analysis of the rhizomes of Drynaria fortunei by orthogonal pre-separation and liquid chromatography mass spectrometry. Planta Med 80:330–336. https://doi.org/10.1055/s-0033-1360362

    Article  CAS  PubMed  Google Scholar 

  10. Yang ZY, Kuboyama T, Tohda C (2017) A systematic strategy for discovering a therapeutic drug for Alzheimer’s disease and its target molecule. Front Pharmacol 8:340. https://doi.org/10.3389/fphar.2017.00340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang ZY, Kuboyama T, Kazuma K, Konno K, Tohda C (2015) Active constituents from Drynaria fortunei rhizomes on the attenuation of Aβ25–35-induced axonal atrophy. J Nat Prod 78:2297–2300. https://doi.org/10.1021/acs.jnatprod.5b00290

    Article  CAS  PubMed  Google Scholar 

  12. Japanese Pharmacopoeia Commission, Ministry of Health, Labour and Welfare (2022) The Japanese standards for non-Pharmacopoeial crude drugs 2022

  13. Araiostegia divaricata var. formosana (Hayata) M.Kato. http://www.worldfloraonline.org/taxon/wfo-0001231132. Accessed 17 Mar 2023

  14. Namba T (1980) The Encyclopedia of Wakan-Yaku (traditional Sino-Japanese medicines) with color pictures. Hoikusha Publishing Co., Ltd, Osaka

    Google Scholar 

  15. Ko YJ, Wu JB, Ho HY, Lin WC (2012) Antiosteoporotic activity of Davallia formosana. J Ethnopharmacol 139:558–565. https://doi.org/10.1016/j.jep.2011.11.050

    Article  CAS  PubMed  Google Scholar 

  16. Wu CF, Lin YS, Lee SC, Chen CY, Wu MC, Lin JS (2017) Effects of Davallia formosana Hayata water and alcohol extracts on osteoblastic MC3T3-E1 Cells. Phytother Res 31:1349–1356. https://doi.org/10.1002/ptr.5860

    Article  CAS  PubMed  Google Scholar 

  17. Ye DJ, Zhang SC (1999) Processing of Chinese Materia Medica. People’s Medical Publishing House

    Google Scholar 

  18. Liu KD, Qiao X, Liang YH, Guo DA, Ye M (2011) HPLC fingerprint of Drynariae Rhizoma. Chin Tradit Herb Drugs 3:510–514

    Google Scholar 

  19. Hu J, Wang JL, Qin BB, Wang LZ, Li X (2021) Chemometric analyses for the characterization of raw and stir-frying processed Drynariae rhizoma based on HPLC fingerprints. Evid Based Complement Alternat Med 2021:6651657. https://doi.org/10.1155/2021/6651657

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu HT, Zou SS, Qi YD, Zhu YX, Li XB, Zhang BG (2012) Quantitative determination of four compounds and fingerprint analysis in the rhizomes of Drynaria fortunei (Kunze) J. Sm. J Nat Med 66:413–419. https://doi.org/10.1007/s11418-011-0595-x

    Article  CAS  PubMed  Google Scholar 

  21. Li SX, Zhang ZG, Long M, Cai GX (2005) HPLC fingerprint of ultramicro Rhizoma Drynariae. Chin Tradit Herb Drugs 36:1634–1637. https://doi.org/10.3321/j.issn:0253-2670.2005.11.015

    Article  CAS  Google Scholar 

  22. Liu HP, Liu M, Li C, Li FM (2008) HPLC fingerprint of Rhizoma Drynariae. J Shenyang Pharm Univ 25:133–136. https://doi.org/10.3969/j.issn.1006-2858.2008.02.013

    Article  Google Scholar 

  23. Li XH, Xiong ZL, Yu MY, Lu XM, Yu X, Li FM (2009) High performance liquid chromatographic fingerprints of ethanol and cyclohexane extracts of Rhizoma Drynariae and quantitative analysis of index components based on principal component analysis. Chin J Chromatogr 27:453–457. https://doi.org/10.3321/j.issn:1000-8713.2009.04.014

    Article  Google Scholar 

  24. Dong YZ, Toume K, Zhu S, Shi YH, Tamura T, Yoshimatsu K, Komatsu K (2023) Metabolomics analysis of peony root using NMR spectroscopy and impact of the preprocessing method for NMR data in multivariate analysis. J Nat Med. https://doi.org/10.1007/s11418-023-01721-x

    Article  PubMed  Google Scholar 

  25. Zhang HP, Zhu S, He YM, Cai SQ, Hakamatsuka T, Maruyama T, Komatsu K (2017) Development of a method for authentication of Drynariae Rhizoma by genetic analysis. Annu Meet Jpn Soc Pharmacogn Abstr Pap 64:303

    Google Scholar 

  26. Vinson N, Gou YZ, Becer CR, Haddleton DM, Gibson MI (2011) Optimised ‘click’ synthesis of glycopolymers with mono/di- and trisaccharides. Polym Chem 2:107–113. https://doi.org/10.1039/c0py00260g

    Article  CAS  Google Scholar 

  27. Hernández-García E, García A, Avalos-Alanís FG, Rivas-Galindo VM, Delgadillo-Puga C, del Camacho-Corona M (2019) Nuclear magnetic resonance spectroscopy data of isolated compounds from Acacia farnesiana (L.) Willd. fruits and two esterified derivatives. Data Brief 22:255–268. https://doi.org/10.1016/j.dib.2018.12.008

    Article  PubMed  Google Scholar 

  28. Long JX, Zhao WF, Xu YF, Li H, Yang S (2018) Carbonate-catalyzed room-temperature selective reduction of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan. Catalysts 8:633. https://doi.org/10.3390/catal8120633

    Article  CAS  Google Scholar 

  29. Cui CB, Tezuka Y, Kikuchi T, Nakano H, Tamaoki T, Park JH (1990) Constituents of a fern, Davallia mariesii Moore. I. isolation and structures of davallialactone and a new flavanone glucuronide. Chem Pharm Bull (Tokyo) 38:3218–3225. https://doi.org/10.1248/cpb.38.3218

    Article  CAS  PubMed  Google Scholar 

  30. Li N, Li X, Yang SL (2006) Chemical constituents of organic acid part from Camptosorus sibiricus Rupr. J Shenyang Pharm Univ 23:427–429

    Google Scholar 

  31. Johnsson P, Peerlkamp N, Kamal-Eldin A, Andersson RE, Andersson R, Lundgren LN, Åman P (2002) Polymeric fractions containing phenol glucosides in flaxseed. Food Chem 76:207–212. https://doi.org/10.1016/S0308-8146(01)00269-2

    Article  CAS  Google Scholar 

  32. Chen YH, Chang FR, Lin YJ, Wang L, Chen JF, Wu YC, Wu MJ (2007) Identification of phenolic antioxidants from sword brake fern (Pteris ensiformis Burm.). Food Chem 105:48–56. https://doi.org/10.1016/j.foodchem.2007.03.055

    Article  CAS  Google Scholar 

  33. Killday KB, Davey MH, Glinski JA, Duan P, Veluri R, Proni G, Daugherty FJ, Tempesta MS (2011) Bioactive A-type proanthocyanidins from Cinnamomum cassia. J Nat Prod 74:1833–1841. https://doi.org/10.1021/np1007944

    Article  CAS  PubMed  Google Scholar 

  34. Yu HH, Toume K, Kurokawa Y, Andoh T, Komatsu K (2021) Iridoids isolated from Viticis Fructus inhibit paclitaxel-induced mechanical allodynia in mice. J Nat Med 75:48–55. https://doi.org/10.1007/s11418-020-01441-6

    Article  CAS  PubMed  Google Scholar 

  35. Batsukh Z, Toume K, Javzan B, Kazuma K, Cai SQ, Hayashi S, Atsumi T, Yoshitomi T, Uchiyama N, Maruyama T, Kawahara N, Komatsu K (2021) Characterization of metabolites in Saposhnikovia divaricata root from Mongolia. J Nat Med 75:11–27. https://doi.org/10.1007/s11418-020-01430-9

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Y, Zhao YY, Du Y, Kang JS (2019) Characterization and classification of three common Bambusoideae species in Korea by an HPLC-based analytical platform coupled with multivariate statistical analysis. Ind Crops Prod 130:389–397. https://doi.org/10.1016/j.indcrop.2018.12.096

    Article  CAS  Google Scholar 

  37. Mansilla EA, Salinas F, Nevado BJJ (1992) Differential determination of furfural and hydroxymethylfurfural by derivative spectrophotometry. J AOAC Int 75:678–684. https://doi.org/10.1093/jaoac/75.4.678

    Article  Google Scholar 

  38. Zhang JH, Di Y, Wu LY, He YL, Zhao T, Huang X, Ding XF, Wu KW, Fan M, Zhu LL (2015) 5-HMF prevents against oxidative injury via APE/Ref-1. Free Radic Res 49:86–94. https://doi.org/10.3109/10715762.2014.981260

    Article  CAS  PubMed  Google Scholar 

  39. Bauer-Marinovic M, Taugner F, Florian S, Glatt H (2012) Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and transgenic mice expressing human sulphotransferases 1A1 and 1A2. Arch Toxicol 86:701–711. https://doi.org/10.1007/s00204-012-0807-5

    Article  CAS  PubMed  Google Scholar 

  40. Sun MY, Li JY, Li D, Huang FJ, Wang D, Li H, Xing Q, Zhu HB, Shi L (2018) Full-length transcriptome sequencing and modular organization analysis of the naringin/neoeriocitrin-related gene expression pattern in Drynaria roosii. Plant Cell Physiol 59:1398–1414. https://doi.org/10.1093/pcp/pcy072

    Article  CAS  PubMed  Google Scholar 

  41. Chang SK, Alasalvar C, Bolling BW, Shahidi F (2016) Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits – A comprehensive review. J Funct Foods 26:88–122. https://doi.org/10.1016/j.jff.2016.06.029

    Article  CAS  Google Scholar 

  42. Monagas M, Garrido I, Lebrón-Aguilar R, Gómez-Cordovés MC, Rybarczyk A, Amarowicz R, Bartolomé B (2009) Comparative flavan-3-ol profile and antioxidant capacity of roasted peanut, hazelnut, and almond skins. J Agric Food Chem 57:10590–10599. https://doi.org/10.1021/jf901391a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DYZ is a recipient of a scholarship from the Mitani scholarship foundation. We thank Link Science for editing of this manuscript.

Funding

This work was supported by JSPS KAKENHI Grant numbers 18K06728, 21K06626, 24406005, 15H05268, and 2023 Director Leadership Expenses, Institute of Natural Medicine, University of Toyama. Part of this study was supported by a research grant from the Japan Agency for Medical Research and Development.

Author information

Authors and Affiliations

Authors

Contributions

YZD, KT, SK, and KK conceived and designed the experiments. YMH, SQC, TM, and KK contributed sample collection. YZD, KT, SK, HPZ, and SZ carried out the experiment. YZD, KT, SK, and KK analyzed and interpreted the data. YZD, KT, and KK wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Kazufumi Toume or Katsuko Komatsu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1314 KB) 

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Toume, K., Kimijima, S. et al. Metabolite profiling of Drynariae Rhizoma using 1H NMR and HPLC coupled with multivariate statistical analysis. J Nat Med 77, 839–857 (2023). https://doi.org/10.1007/s11418-023-01726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01726-6

Keywords

Navigation