Skip to main content
Log in

Zalcman’s problem and related two-radii theorems

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

Let G be the group of conformal automorphisms of the unit disc \({\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1\}\). For \(r>0\), we put \(B_{r}=\{z\in {\mathbb {D}}:|z|<\tanh r\}\). Denote by \(\overline{B}_{r}\) the closure of the disc \(B_r\), and by \(\partial B_{r}\) its boundary. Let \(\chi _r\) be the characteristic function (indicator) of \(B_r\). Assume that \(r_1, r_2\in (0,+\infty )\) are fixed and \(R>\max \, \{r_1,r_2\}\). We study the holomorphicity problem for functions \(f\in C(B_R)\) satisfying the condition

$$\begin{aligned} \int \limits _{\partial B_{r_j}} f(g(z))\, dz=0 \end{aligned}$$

for all \(g\in G\) such that \(g \overline{B}_{r_j}\subset B_R\), \(j=1,2\). We find the exact conditions for holomorphicity in terms of size \(B_R\) and properties of zeros of generalized spherical transforms of functions \(\chi _{r_1}\) and \(\chi _{r_2}\). In particular, a strengthening of the Berenstein–Pascuas theorem (Israel J Math 86:61–106, 1994) on two radii is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovsky, M.L.: Fourier transform on \(SL_2({\mathbb{R} })\) and Morera type theorems. Soviet Math. Dokl. 19, 1522–1525 (1978)

    Google Scholar 

  2. Berenstein, C.A., Gay, R.: A local version of the two-circles theorem. Israel J. Math. 55, 267–288 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berenstein, C.A., Pascuas, D.: Morera and mean-value type theorems in the hyperbolic disk. Israel J. Math. 86, 61–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berenstein, C.A., Struppa, D.C.: Complex analysis and convolution equations. In: Henkin, G.M. (ed.) Several Complex Variables V. Encylopaedia of Mathematical Sciences, vol. 54, pp. 1–108. Springer, New York (1993)

  5. Berenstein, C.A., Zalcman, L.: Pompeiu’s problem on spaces of constant curvature. J. Anal. Math. 30, 113–130 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brown, L., Schreiber, B.M., Taylor, B.A.: Spectral synthesis and the Pompeiu problem. Ann. Inst. Fourier (Grenoble) 23, 125–154 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delsarte, J.: Note sur une propriété nouvelle des fonctions harmoniques. C. R. Acad. Sci.. Paris Sér. A–B 246, 1358–1360 (1958)

    MATH  Google Scholar 

  8. Flatto, L.: The converse of Gauss theorem for harmonic functions. J. Differ. Equ. 1, 483–490 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions (Bateman Manuscript Project), vol. I, II. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  10. Helgason, S.: Groups and Geometric Analysis. Academic Press, New York (1984)

    MATH  Google Scholar 

  11. Helgason, S.: Integral Geometry and Radon Transforms. Springer, New York (2011)

    MATH  Google Scholar 

  12. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. D. Van Nostrand Company, INC., New York (1966)

    MATH  Google Scholar 

  13. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I, II. Springer, New York (1983)

    MATH  Google Scholar 

  14. Koornwinder, T.H.: Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, R.A., et al. (eds.) Special Functions: Group Theoretical Aspects and Applications, pp. 1–85. D. Reidel Publishing Company, Dordrecht (1984)

    Google Scholar 

  15. Levin, B.Ya. (in collaboration with Lyubarskiǐ, Yu., Sodin, M., Tkachenko, V.): Lectures on Entire Functions. AMS Transl. Math. Monograph, vol 150. Providence, Rhode Island (1996)

  16. Riekstyn’sh, Z.Y.: Asymptotic Expansions of Integrals, vol. I. Zinatne, Riga (1974)

    Google Scholar 

  17. Schwartz, L.: Théorie générale des fonctions moyenne périodiques. Ann. Math. 48, 857–929 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  18. Smith, J.D.: Harmonic analysis of scalar and vector fields in \({\mathbb{R} }^n\). Proc. Camb. Philos. Soc. 72, 403–416 (1972)

    Article  Google Scholar 

  19. Volchkov, V.V.: On a problem of Zalcman and its generalizations. Mat. Zametki. 53(2), 30–36 (1993). English transl.: Math. Notes 53(2), 134–138 (1993)

  20. Volchkov, V.V.: Integral Geometry and Convolution Equations. Kluwer, Dordrecht (2003)

    Book  MATH  Google Scholar 

  21. Volchkov, V.V., Volchkov, V.V.: Convolution equations and the local Pompeiu property on symmetric spaces and on phase space associated to the Heisenberg group. J. Anal. Math. 105, 43–124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Volchkov, V.V., Volchkov, V.V.: Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group. Springer, New York (2009)

    Book  MATH  Google Scholar 

  23. Volchkov, V.V., Volchkov, V.V.: Offbeat Integral Geometry on Symmetric Spaces. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  24. Zalcman, L.: Analyticity and the Pompeiu problem. Arch. Rat. Anal. Mech. 47, 237–254 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zalcman, L.: A bibliographic survey of the Pompeiu problem. In: Fuglede, B., et al. (eds.) Approximation by Solutions of Partial Differential Equations, pp. 185–194. Kluwer, Dordrecht (1992)

    Chapter  MATH  Google Scholar 

  26. Zalcman, L.: Supplementary bibliography to A bibliographic survey of the Pompeiu problem. In: Radon Transforms and Tomography. Contemporary Mathematics 278, 69–74 (2001)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors wrote, read, and approved the final manuscript.

Corresponding authors

Correspondence to Valery Volchkov or Vitaly Volchkov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to the memory of Professor Lawrence Zalcman (09.06.1943–31.05.2022).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volchkov, V., Volchkov, V. Zalcman’s problem and related two-radii theorems. Anal.Math.Phys. 13, 72 (2023). https://doi.org/10.1007/s13324-023-00835-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-023-00835-5

Keywords

Mathematics Subject Classification

Navigation