Skip to main content
Log in

Changes in the Population of Immature Neurons in the Piriform Cortex of Experimental Animals Studies in the Long-Term Period after Early Life Stress

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Stress in the early period of life is an important factor predisposing to the development of pathology of the nervous system in animals and human beings in the late period of ontogenesis. We modeled early-life stress to assess the activation of the piriform cortex upon presentation of olfactory stimuli to experimental animals (CD1 mice of an age of 60 days and 10 months of postnatal development) and to evaluate marker expression of neurons with prolonged immaturity involved in plasticity processes of the adult brain and its recovery after injury. It has been established that early life stress reduces the number of immature neurons with DCX+PSA-NCAM+ phenotype in the piriform cortex and the response to olfactory-memory induction in the late period after stress. At the age of 60 days (P60), olfactory stimulation reduced sensitivity to unpleasant stimuli and stimulated the processes of short-term memory, while this effect is less pronounced at the age of 10 months. The results obtained indicate a possible contribution of immature neurons of the piriform cortex to the mechanisms of aberrant neuroplasticity in the late period of ontogenesis after early life stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Agostini, M., Romeo, F., Inoue, S., Niklison-Chirou, M.V., Elia, A.J., Dinsdale, D., Morone, N., Knight, R.A., Mak, T.W., and Melino, G., Metabolic reprogramming during neuronal differentiation, Cell Death Differ., 2016, vol. 23, p. 1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benedetti, B., Dannehl, D., König, R., Coviello, S., Kreutzer, C., Zaunmair, P., Jakubecova, D., Weiger, T.M., Aigner, L., Nacher, J., Engelhardt, M., and Couillard-Després, S., Functional integration of neuronal precursors in the adult murine piriform cortex, Cereb. Cortex, 2020, vol. 30, p. 1499.

    Article  PubMed  Google Scholar 

  3. Berdugo-Vega, G., Arias-Gil, G., López-Fernández, A., Artegiani, B., Wasielewska, J.M., Lee, C.-C., Lippert, M.T., Kempermann, G., Takagaki, K., and Calegari, F., Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life, Nat. Commun., 2020, vol. 11, p. 135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Besnard, A. and Sahay, A., Enhancing adult neurogenesis promotes contextual fear memory discrimination and activation of hippocampal-dorsolateral septal circuits, Behav. Brain Res., 2021, vol. 399, p. 112917.

    Article  PubMed  Google Scholar 

  5. Bonfanti, L. and Seki, T., The PSA-NCAM-positive “immature” neurons: an old discovery providing new vistas on brain structural plasticity, Cells, 2021, vol. 10, p. 2542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coviello, S., Gramuntell, Y., Castillo-Gomez, E., and Nacher, J., Effects of dopamine on the immature neurons of the adult rat piriform cortex, Front. Neurosci., 2020, vol. 14, p. 574234.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fogelman, N. and Canli, T., Early life stress, physiology, and genetics: a review, Front. Psychol., 2019, vol. 10, p. 1668.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gómez-Climent, M.A., Castillo-Gómez, E., Varea, E., Guirado, R., Blasco-Ibáñez, J.M., Crespo, C., Martínez-Guijarro, F.J., and Nácher, J., A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood, Cereb. Cortex, 2008, vol. 18, p. 2229.

    Article  PubMed  Google Scholar 

  9. Gómez-Climent, M.A., Guirado, R., Castillo-Gómez, E., Varea, E., Gutierrez-Mecinas, M., Gilabert-Juan, J., García-Mompó, C., Vidueira, S., Sanchez-Mataredo-na, D., Hernández, S., Blasco-Ibáñez, J.M., Crespo, C., Rutishauser, U., Schachner, M., and Nacher, J., The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is expressed in a subpopulation of mature cortical interneurons characterized by reduced structural features and connectivity, Cereb. Cortex, 2011, vol. 21, p. 1028.

    Article  PubMed  Google Scholar 

  10. Herzberg, M.P. and Gunnar, M.R., Early life stress and brain function: activity and connectivity associated with processing emotion and reward, Neuroimage, 2020, vol. 209, p. 116493.

    Article  PubMed  Google Scholar 

  11. Huang, L.-T., Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms, Front. Mol. Neurosci., 2014, vol. 7, p. 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iwata, R. and Vanderhaeghen, P., Regulatory roles of mitochondria and metabolism in neurogenesis, Curr. Opin. Neurobiol., 2021, vol. 69, p. 231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kronman, H., Torres-Berrío, A., Sidoli, S., Issler, O., Godino, A., Ramakrishnan, A., Mews, P., Lardner, C.K., Parise, E.M., Walker, D.M., van der Zee, Y.Y., Browne, C.J., Boyce, B.F., Neve, R., Garcia, B.A., et al., Long-term behavioral and cell-type-specific molecular effects of early life stress are mediated by H3K79me2 dynamics in medium spiny neurons, Nat. Neurosci., 2021, vol. 24, p. 667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. La Rosa, C., Parolisi, R., and Bonfanti, L., Brain structural plasticity: from adult neurogenesis to immature neurons, Front. Neurosci., 2020, vol. 14, p. 75.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu, J.-H., Wang, Q., You, Q.-L., Li, Z.-L., Hu, N.-Y., Wang, Y., Jin, Z.-L., Li, S.-J., Li, X.-W., Yang, J.-M., Zhu, X.-H., Dai, Y.-F., Xu, J.-P., Bai, X.-C., and Gao, T.-M., Acute EPA-induced learning and memory impairment in mice is prevented by DHA, Nat. Commun., 2020, vol. 11, p. 5465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malinovskaya, N.A., Morgun, A.V., Lopatina, O.L., Panina, Y.A., Volkova, V.V., Gasymly, E.L., Taranushen-ko, T.E., and Salmina, A.B., Early life stress: consequences for the development of the brain, Neurosci. Behav. Physiol., 2018, vol. 48, p. 233.

    Article  Google Scholar 

  17. Mirescu, C., Peters, J.D., and Gould, E., Early life experience alters response of adult neurogenesis to stress, Nat. Neurosci., 2004, vol. 7, p. 841.

    Article  CAS  PubMed  Google Scholar 

  18. Piumatti, M., Palazzo, O., La Rosa, C., Crociara, P., Parolisi, R., Luzzati, F., Lévy, F., and Bonfanti, L., Non-newly generated, “immature” neurons in the sheep brain are not restricted to cerebral cortex, J. Neurosci., 2017, vol. 38, p. 826.

    Article  PubMed  Google Scholar 

  19. Rotheneichner, P., Belles, M., Benedetti, B., König, R., Dannehl, D., Kreutzer, C., Zaunmair, P., Engelhardt, M., Aigner, L., Nacher, J., and Couillard-Despres, S., Cellular plasticity in the adult murine piriform cortex: continuous maturation of dormant precursors into excitatory neurons, Cereb. Cortex, 2018, vol. 28, p. 2610.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ruiz, R., Roque, A., Pineda, E., Licona-Limón, P., Valdéz-Alarcón, J.J., and Lajud, N., Early life stress accelerates age-induced effects on neurogenesis, depression, and metabolic risk, Psychoneuroendocrinology, 2018 vol. 96, p. 203.

    Article  PubMed  Google Scholar 

  21. Salmina, A.B., Gorina, Y.V., Komleva, Y.K., Panina, Y.A., Malinovskaya, N.A., and Lopatina, O.L., Early life stress and metabolic plasticity of brain cells: impact on neurogenesis and angiogenesis, Biomedicine, 2021, vol. 9, p. 1092.

    CAS  Google Scholar 

  22. Schellinck, H.M., Forestell, C.A., and LoLordo, V.M., A simple and reliable test of olfactory learning and memory in mice, Chem. Senses, 2001, vol. 26, p. 663.

    Article  CAS  PubMed  Google Scholar 

  23. Sorrells, S.F., Paredes, M.F., Velmeshev, D., Herranz-Pérez, V., Sandoval, K., Mayer, S., Chang, E.F., Insausti, R., Kriegstein, A.R., Rubenstein, J.L., Garcia-Verdugo, J.M., Huang, E.J., and Alvarez-Buylla, A., Immature excitatory neurons develop during adolescence in the human amygdala, Nat. Commun., 2019, vol. 10, p. 2748.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Uspenskaya, Yu.A., Malinovskaya, N.A., Volkova, V.V., Panina, Yu.A., Ryabokon, R.V., Frolova, O.V., and Salmina, A.B., Development of neurological deficit after perinatal hypoxia and early life stress in laboratory animals, Sib. Med. Obozr., 2015, vol. 5, p. 49.

    Google Scholar 

  25. Vadodaria, K.C., Yanpallewar, S.U., Vadhvani, M., Toshniwal, D., Cameron Liles, L., Rommelfanger, K.S., Weinshenker, D., and Vaidya, V.A., Noradrenergic regulation of plasticity marker expression in the adult rodent piriform cortex, Neurosci. Lett., 2017, vol. 644, p. 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X., Liu, H., Morstein, J., Novak, A.J.E., Trauner, D., Xiong, Q., Yu, Y., and Ge, S., Metabolic tuning of inhibition regulates hippocampal neurogenesis in the adult brain, Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, p. 25818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-015-00472.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Uspenskaya.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. Work with animals was carried out in compliance with the principles of humane treatment that are set out in a Directive of the European Community (2010/63/EC). The protocols of the experiments were approved by the bioethical commission for working with animals at the local ethics committee of Voyno-Yasenetsky Krasnoyarsk State Medical University.

Additional information

Translated by I. Fridlyanskaya

Abbreviations: IHCA—immunohistochemical analysis; OS—olfactory stimulation; ELS—early life stress; DCX—doublecortin; nng-IN—non-newly generated immature neurons; PBS—phosphate buffered saline; PSA-NCAM—polysialylated neural cell adhesion molecule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmina, A.B., Uspenskaya, Y.A., Panina, Y.A. et al. Changes in the Population of Immature Neurons in the Piriform Cortex of Experimental Animals Studies in the Long-Term Period after Early Life Stress. Cell Tiss. Biol. 17, 420–427 (2023). https://doi.org/10.1134/S1990519X23040119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23040119

Keywords:

Navigation