Skip to main content
Log in

The Activity of Metalloproteinases in Two Placenta Mesenchymal Stem-Cell Lines from a Single Donor Differing in Adipogenic Differentiation Potential and the Nature of Replicative Aging

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Long-term cultivation of two lines of human MSCs isolated from different places in the placenta was carried out. The MSC-PL-1 cell line is characterized by premature aging compared to the MSC-PL-2 line. Upon induction of adipogenic differentiation in cells of both lines, it turned out that it does not occur at early and late passages in MSC-PL-1 cells, in contrast to MSC-PL-2 cells. Comparative analysis of the activities of matrix metalloproteinases (MMPs) 1, 2, and 9 during replicative aging (RA) of these lines indicates interstrain differences. Thus, in the MSC-PL-2 line, there is a decrease in the levels of MMP-2 and -1 activity during RA and the level of MMP-9 activity does not change, while, in the MSC-PL-1 line, which has premature RA, an increase in the level of MMP-1 and -9 activity and a decrease in the level of MMP-2 activity are observed. Analysis of the activities of MMP-1 and -2 during adipogenic differentiation in MSC-PL-2 cells at the early sixth passage showed a number of differences between them within 21 days, but the changes in both MMPs vary. MMP-9 activity during 21 days of differentiation changes differently. At the late 16th passage, the nature of changes in the activity of all three MMPs during 21 days of differentiation is the same. Due to the absence of adipogenic differentiation in MSC-PL-1 cells, we analyzed the activities of MMP-1, -2, and -9 when cultivated in an induction medium for 21 days at early (sixth) and late (13th) passages. In both variants, there are changes in the activity of three MMPs during cultivation in the induction medium, but these changes are not synchronous. The activities of all three MMPs at the 13th passage decrease relative to the sixth passage. In general, the results obtained indicate the participation of MMPs in a wide range of processes in MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Adak, S., Magdalene, D., Deshmukh, S., Das, D., and Jaganathan, B., A review on mesenchymal stem cells for treatment of retinal diseases, Stem Cell Rev. Rep., 2021, vol. 6, p. 1. https://doi.org/10.1007/s12015-020-10090-x

    Article  Google Scholar 

  2. Akpinar, G., Yoneten, K.K., Kasap, M., and Erdal Karaoz, E., Search for novel plasma membrane proteins as potential biomarkers in human mesenchymal stem cells derived from dental pulp, adipose tissue, bone marrow, and hair follicle, J. Membr. Biol., 2021, vol. 254, p. 409. https://doi.org/10.1007/s00232-021-00190-1

    Article  CAS  PubMed  Google Scholar 

  3. Albu, S., Kumru, H., Coll, R., Vives, J., Vallés, M., Denito-Penalva, J., Rodriguez, L., Codinach, M., Hernández, J., Navarro, X., and Vidal, J., Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study, Cytotherapy, 2021, vol. 23, p. 146. https://doi.org/10.1016/j.jcyt.2020.08.008

    Article  CAS  PubMed  Google Scholar 

  4. Almalki, S.G. and Agrawal, D.K., Effects of matrix metalloproteinases on the fate of mesenchymal stem cells, Stem Cell Res. Ther., 2016, vol. 7, p. 129. https://doi.org/10.1186/s13287-016-0393-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bianchi M.V., Awaja F., and Altankov G., Dynamic adhesive environment alters the differentiation potential of young and ageing mesenchymal stem cells. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, vol. 78, p. 467. https://doi.org/10.1016/j.msec.2017.04.110

  6. Bonab, M.M., Alimoghaddam, K., Talebian, F., Ghaffari, S.H., Ghavamzadeh, A., and Nikbin, B., Aging of mesenchymal stem cell in vitro, BMC Cell Biol., 2006, vol. 7, p. 14.https://doi.org/10.1186/1471-2121-7–14 Bouloumie, A., Sengenes, C., Portolan, G., Galitzky, J., and Lafontan, M., Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation, Diabetes, 2001, vol. 50, p. 2080. https://doi.org/10.2337/diabetes.50.9.2080

  7. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, p. 248. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  8. Chavey, C., Mari, B., Monthouel, M.N., Bonnafous, S., Anglard, P., Van Obberghen, E., and Tartare-Deckert, S., Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation, J. Biol Chem., 2003, vol. 278, p. 11888. https://doi.org/10.1074/jbc.M209196200

    Article  CAS  PubMed  Google Scholar 

  9. Chen, C.-F., Chen, Y.-C., Fu, Y.-S., Tsai, S.-W., Wu, P.-K., Chen, C.-M., Chang, M.-C., and Chen, W.-M., Characterization of osteogenesis and chondrogenesis of human decellularized allogeneic bone with mesenchymal stem cells derived from bone marrow, adipose tissue, and Wharton’s jelly, Int. J. Mol. Sci., 2021, vol. 22, p. 8987. https://doi.org/10.3390/ijms22168987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi, J.S., Lee, B.J., Park, H.Y., Song, J.S., Shin, S.C., Lee, J.C., Wang, S.G., and Jung, J.S., Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells, Cell Physiol. Biochem., 2015, vol. 36, p. 85. https://doi.org/10.1159/000374055

    Article  CAS  PubMed  Google Scholar 

  11. Costa, L., Eiro, N., Fraile, M., Gonzalez, L, Saá, J, Garcia-Portabella, P., Vega, B., Schneider, J., and Vizoso, F., Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses, Cell Mol. Life Sci., 2021, vol. 78, p. 447. https://doi.org/10.1007/s00018-020-03600-0

    Article  CAS  PubMed  Google Scholar 

  12. Cox, R.P., Krauss, M.R., Balis, M.E., and Dancis, J., Communication between normal and enzyme-deficient cells in tissue culture, Exp. Cell Res., 1972, vol. 74, p. 251. https://doi.org/10.1016/0014-4827(72)90503-4

    Article  CAS  PubMed  Google Scholar 

  13. Darnell, M., O’Neil, A., Mao, A., Gu, L., Rubin, L.L., and Mooney, D.J., Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, p. E8368. https://doi.org/10.1073/pnas.1802568115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.J., and Horwitz, E., Minimal criteria for defining multipotent mesenchymal stromal cells, Int. Soc. Cell. Therapy Position Statement, Cytotherapy, 2006, vol. 8, p. 315. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  15. Eiro, N., Fraile, M., Fernandes-Francos, S., Sanchez, R., Costa, L.A., and Vizovo, F.J., Importance of the origin of mesenchymal (stem) stromal cells in cancer biology: “alliance” or “war” in intercellular signals, Cell Biosci., 2021, vol. 11, p. 109. https://doi.org/10.1186/s13578-021-00620-6

    Article  PubMed  PubMed Central  Google Scholar 

  16. Felkin L.E., Birks E.J., George R., Wong S., Khaghani A., Yacoub M.H., and Barton P.J., A quantitative gene expression profile of matrix metalloproteinases (MMPS) and their inhibitors (TIMPS) in the myocardium of patients with deteriorating heart failure requiring left ventricular assist device support., J. Heart Lung Transplant., 2006, vol. 25, pp. 1413–419. https://doi.org/10.1016/j.healun.2006.09.006

  17. Gattazzo, F., Urciuolo, A., and Bonaldo, P., Extracellular matrix: a dynamic microenvironment for stem cell niche, Biochim. Biophys. Acta, 2014, vol. 1840, p. 2506. https://doi.org/10.1016/j.bbagen.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gutiérrez-Fernández, A., Soria-Valles, C., Osorio, F.G., Gutiérrez-Abril, J., Garabaya, C., Aguirre, A., Fueyo, A., Fernández-García, M.S., Puente, X.S., and López-Otín, C., Loss of MT1-MMP causes cell senescence and nuclear defects which can be reversed by retinoic acid, EMBO J., 2015, vol. 34, p. 1875. https://doi.org/10.15252/embj.201490594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hooper, M.L. and Subak-Sharpe, J.H., Metabolic cooperation between cells, Int. Rev. Cytol., 1981, vol. 69, p. 45. https://doi.org/10.1016/S0074-7696(08)62320-7

    Article  CAS  PubMed  Google Scholar 

  20. Jin, Q., Yuan, K., Lin, W., Niu, C., Ma, R., and Huang, Z., Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential, Artif. Cells Nanomed. Biotechnol., 2019, vol. 47, p. 1577. https://doi.org/10.1080/21691401.2019.1594861

    Article  CAS  PubMed  Google Scholar 

  21. Kessenbrock, K., Plaks, V., and Werb, Z., Matrix metalloproteinases: regulators of the tumor microenvironment, Cell, 2010, vol. 141, p. 52. https://doi.org/10.1016/j.cell.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kobayashi, T., Torii, D., Iwata, T., Izumi, Y., Nasu, M., and Tsutsui, T.W., Characterization of proliferation, differentiation potential, and gene expression among clonal cultures of human dental pulp cells, Hum. Cell, 2020, vol. 33, p. 490. https://doi.og/10.1007/s13577-020-00327-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koltsova, A.M., Zenin, V.V., Turilova, V.I., Yakovleva, T.K., and Poljanskaya, G.G., The derivation and characterization of mesenchymal stem cell line, isolated from human pulp of a deciduous tooth, Tsitologiya, 2018, vol. 60, p. 955. https://doi.org/10.1134/S0041377118120015

  24. Koltsova, A.M., Zenin, V.V., Turilova, V.I., Yakovleva, T.K., and Poljanskaya, G.G. Derivation and characterization of a line of mesenchymal stem cells isolated from human gingiva, Tsitologiya, 2019, vol. 61, no. 8, pp. 658–671. https://doi. 0.1134/S0041377119080029.

  25. Koltsova, A.M., Zenin, V.V., Petrosyan, M.A., Turilova V.I., Yakovleva, T.K., and Poljanskaya, G.G., Isolation and characterization of mesenchymal stem cell line derived from different regions of the placenta of the same donor, Cell Tissue Biol., 2021, vol. 15, p. 356. https://doi.org/10.1134/S1990519X21040040

    Article  CAS  Google Scholar 

  26. Krylova, T.A., Musorina, A.S., Zenin, V.V. , and Poljan-skaya, G.G., Cellular spheroids obtained from mesenchymal stem cells derived from bone marrow and limb muscle of early human embryo, Tsitologiya, 2015, vol. 57, no. 7, p. 480. https://doi.org/10.1134/S1990519X15060061

  27. Laemmli, U., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, p. 680685. https://doi.org/10.1038/227680a0

    Article  Google Scholar 

  28. Li, J., Xu, S.-Q., Zhao, Y.-M., Yu, S., Ge, L.-H., and Xu, B.-H., Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth, bone marrow, gingival tissue, and umbilical cord, Mol. Med. Rep., 2018, vol. 18, p. 4969. https://doi.org/10.3892/mmr.2018.9501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lo Surdo, J.L., Millis, B.A., and Bauer, S.R., Automated microscopy as a quantitative method to measure differences in adipogenic differentiation in preparations of human mesenchymal stromal cells, Cytotherapy, 2013, vol. 15, p. 1527. https://doi.org/10.1016/j.jcyt.2013.04.010

  30. Lynch, K. and Pei, M., Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies, Organogenesis, 2014, vol. 10, p. 289. https://doi.org/10.4161/15476278.2014.970089

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mannello, F., Tonti, G.A., Bagnara, G.P., and Papa, S., Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells, Stem Cells, 2006, vol. 24, p. 475. https://doi.org/10.1634/stemcells.2005-0333

    Article  CAS  PubMed  Google Scholar 

  32. Mannino, G., Russo, C, Longo, A., Anfuso, C.G., Lupo, G., Furno, D.L., Giuffrida, R., and Giurdanella, G., Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases, World J. Stem Cells, 2021, vol. 13, p. 632. https://doi.org/10.4252/wjsc.v13.i6.632

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moghadasi, S., Elveny, M., Rahman, H.S., Suksatan, W., Jalil, A.T., Abdelbasset, W.K., Yumashev, A.V., Shariatzadeh, S., Motavalli, R., Behzad, F., Marofi, F., Hassanzadeh, A., Pathak, Y., and Jarahian, M., A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine, J. Transl. Med., 2021, vol. 19, p. 302. https://doi.org/10.1186/s12967-021-02980-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Monterubbianesi R., Bencun M., Pagella P., Woloszyk A., Orsini G., and Mitsiadis T.A., A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci. Rep., 2019, vol. 9, p.1761. https://doi.org/10.1038/s41598-018-37981-x

  35. Muraglia, A., Cancedda, R., and Quarto, R., Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model, J. Cell Sci., 2000, vol. 7, p. 1161. https://doi.org/10.1242/jcs.113.7.1161

    Article  Google Scholar 

  36. Musorina, A.S., Zenin, V.V., Turilova, V.I., Yakovle-va, T.K., and Poljanskaya, G.G., Characterization of a nonimmortalized mesenchymal stem cell line isolated from human epicardial adipose tissue, Cell Tissue Biol., 2019, vol.13, p. 247. https://doi.org/10.1134/S1990519X19040060

    Article  Google Scholar 

  37. Nagase, H. and Woessner, J.F., Matrix metalloproteinases, J. Biol. Chem., 1999, vol. 274, p. 21491. https://doi.org/10.1201/9781482272765

    Article  CAS  PubMed  Google Scholar 

  38. Niedernhofer, L.J., Gurkar, A.U., Wang, Y., Vijg, J., Hoeijmakers, J.H.J., and Robbins, P.D., Nuclear genomic instability and aging, Ann. Rev. Biochem., 2018, vol. 87, p. 295. https://doi.org/10.1146/annurev-biochem-062917-012239

    Article  CAS  PubMed  Google Scholar 

  39. Nimiritsky, P.P., Sagaradze, G.D., Efimenko, A.Yu., Makarevich, P.I., and Tkachuk, V.A., The stem cell niche, Tsitologiya, 2018, vol. 60, p. 955. https://doi.org/10.31116/tsitol.2018.08.01

    Article  Google Scholar 

  40. Noh, E.M., Kim, J.M., Hong, O.Y., Song, H.K., Kim, J.S., Kwon, K.B., and Lee, Y.R., PTEN inhibits replicative senescence-induced MMP-1 expression by regulating NOX4-mediated ROS in human dermal fibroblasts, J. Cell Mol. Med., 2017, vol. 21, p. 3113. https://doi.org/10.1111/jcmm.13220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oliver, G.W., Stetler-Stevenson, W.G., and Kleiner, D.E., Zymography, casein zymography, and reverse zymography: activity assays for proteases and their inhibitors, in Proteolytic Enzymes, Springer Lab. Manual, Berlin: Springer, 1999. https://doi.org/10.1007/978-3-642-59816-6_5

  42. Page-McCaw, A., Ewald, A.J., and Werb, Z., Matrix metalloproteinases and the regulation of tissue remodeling, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, p. 221. https://doi.org/10.1038/nrm2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parolini, O., Alviano, F., Bagnara, G.P., Bilic, G., Buhring, H.J., Evangelista, M., Hennerbichler, S., Liu, B., Magatti, M., Mao, N., Miki, T., Marongiu, F., Nakajima, H., Nicaido, T., Portmann-Lanz, C.B., et al., Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta derived stem cells, Stem Cells, 2008, vol. 26, p. 300. https://doi.org/10.1634/stemcells.2007-0594

    Article  PubMed  Google Scholar 

  44. Poljanskaya, G.G., Types of cell cultures. Formation, main characteristics and variability of cell lines, in Metody kul’tivirovaniya kletok (Methods of Cell Cultivation), St. Petersburg: Politekh. Univ., 2008, p. 22.

  45. Poljanskaya, G.G., Comparative analysis of the lines of human mesenchymal stem cells derived in the collection of cell cultures of vertebrates (review), in Sbornik “Kletochnye kul’tury” (Collection “Cell Cultures”), St. Petersburg: Politekh. Univ., 2018, no. 34, p. 3. ISSN 2077-6055.

  46. Raposo, L., Lourenço, A.P., Nascimento, D.S., Rui Cerqueira, R., Cardim, N., and Leite-Moreira, A., Human umbilical cord tissue-derived mesenchymal stromal cells as adjuvant therapy for myocardial infarction: a review of current evidence focusing on pre-clinical large animal models and early human trials, Cytotherapy, 2021, vol. 23, p. 974. https://doi.org/10.1016/j.jcyt.2021.05.002

    Article  PubMed  Google Scholar 

  47. Reed, S.L. and Escayg, A., Extracellular vesicles in the treatment of neurological disorders, Neurobiol. Dis., 2021, vol. 157, p. 105445. https://doi.org/10.1016/j.nbd.2021.105445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., and Verfaillie, C.M., Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells, Blood, 2001, vol. 98, p. 2615. https://doi.https://doi.org/10.1182/blood.V98.9.2615

    Article  CAS  PubMed  Google Scholar 

  49. Safari, F., Shakery, T., and Sayadamin, N., Evaluating the effect of secretome of human amniotic mesenchymal stromal cells on apoptosis induction and epithelial-mesenchymal transition inhibition in LNCaP prostate cancer cells based on 2D and 3D cell culture models, Cell Biochem. Funct., 2021, vol. 39, p. 813. https://doi.org/10.1002/cbf.3654

    Article  CAS  PubMed  Google Scholar 

  50. Schneider, R.K., Puellen, A., Kramann, R., Raupach, K., Bornemann, J., Knuechel, R., Perez-Bouza, A., and Neuss, S., The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds, Biomaterials, 2010, vol. 31, p. 467. https://doi.org/10.1016/j.biomaterials.2009.09.059

    Article  CAS  PubMed  Google Scholar 

  51. Semenova, E., Grudniak, M.P., Machaj, E.K., Bocian, K., Chroscinska-Krawczyk, M., Trochonowicz, M, Stepaniec, I.M., Murzyn, M., Zagorska, K.E., Boruczkowski, D., Kolanowski, T.J., Oldak, T., and Rozwa-dowska, N., Mesenchymal stromal cells from different parts of umbilical cord: approach to comparison and characteristics, Stem Cell Rev. Rep., 2021. https://doi.org/10.1007/s12015-021-10157-3

  52. Sensebé, L., Krampera, M., Schrezenmeier, H., Bourin, P., and Giordano, R., Mesenchymal stem cells for clinical application, Vox Sang, 2010, vol. 98, p. 93. https://doi.org/10.1111/j.1423-0410.2009.01227.x

    Article  CAS  PubMed  Google Scholar 

  53. Sharovskaya, Y.Y., Lagarkova, M.A, Kiselev, S.L, and Chailakhyan, L.M., Gap junctional intercellular communication in human embryonic stem cells during spontaneous differentiation, Dokl. Biol. Sci., 2009, vol. 427, p. 387. https://doi.org/10.1134/S0012496609040243

    Article  PubMed  Google Scholar 

  54. Shin, S., Lee, J., Kwon, Y., Park, K.-S., Jeong, J.-H., Choi, S.-J., Bang, S., Chang, J., and Lee, C., Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and Wharton’s jelly, Int. J. Mol. Sci., 2021, vol. 22, p. 845. https://doi.org/10.3390/ijms22020845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sillat, T., Saat, R., Pöllänen, R., Hukkanen, M., Takagi, M., and Konttinen, Y.T., Basement membrane collagen type IV expression by human mesenchymal stem cells during adipogenic differentiation, J. Cell Mol. Med., 2012, vol. 16, p. 1485. https://doi.org/10.1111/j.1582-4934.2011.01442.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Somoza, R., Conget, P., and Rubio, F.J., Neuropotency of human mesenchymal stem cell cultures: clonal studies reveal the contribution of cell plasticity and cell contamination, Biol. Blood Marrow Transplant., 2008, vol. 14, p. 546. https://doi.org/10.1016/j.bbmt.2008.02.017

    Article  CAS  PubMed  Google Scholar 

  57. Stanko, P., Kaiserova, K., Altanerova, V., and Altaner, C., Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2014, vol. 158, p. 373. https://doi.org/10.5507/bp.2013.078

    Article  PubMed  Google Scholar 

  58. Sun, J., Xing, F., Zou, M., Gong, M., Li, L., and Zhou Xiang, Z., Comparison of chondrogenesis-related biological behaviors between human urine-derived stem cells and human bone marrow mesenchymal stem cells from the same individual, Stem Cell Res. Ther., 2021, vol. 12, p. 366. https://doi.org/10.1186/s13287-021-02370-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sworder, B.J., Yoshizawa, S., Mishra, P.J., Cherman, N., Kuznetsov, S.A., Merlino, G., Balakumaran, A, and Robey, P.G., Molecular profile of clonal strains of human skeletal stem/progenitor cells with different potencies, Stem Cell Res., 2015, vol. 14, p. 297. https://doi.org/10.1016/j.scr.2015.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tai, C., Wang, L., Xie, Y., Gao, T., Huang, F., and Wang, B., Analysis of key distinct biological characteristics of human placenta-derived mesenchymal stromal cells and individual heterogeneity attributing to donors, Cells Tissue Organs, 2021, vol. 210, p. 45. https://doi.org/10.1159/000513038

    Article  CAS  Google Scholar 

  61. Teplyashin, A.S., Chupikova, N.I., Korzhikova, S.V., Sharifullina, S.Z., Rostovskaya, M.S., Topchiashvili, Z.A., and Savchenkova, I.P., Comparative analysis of two cell populations with a phenotype similar to mesenchymal stem cells isolated from different areas of subcutaneous fat, Tsitologiya, 2005, vol. 47, no. 7, pp. 637–643.

    Google Scholar 

  62. Vilaça-Faria, H., Marote, A., Lages, I., Ribeiro, C., Mendes-Pinheiro, B., Domingues, A.V., Campos, J., Lanceros-Mendez, S., Salgado, A.J., and Teixeira, F.G., Fractionating stem cells secretome for Parkinson’s disease modeling: is it the whole better than the sum of its parts?, Biochimie, 2021, vol. 189, p. 87. https://doi.org/10.1016/j.biochi.2021.06.008

    Article  CAS  PubMed  Google Scholar 

  63. Voronkina, I.V., Smagina, L.V., Krylova, T.A., Musorina, A.S., and Poljanskaya, G.G., Analysis of matrix metalloproteinase activity during differentiation of mesenchymal stem cells isolated from different tissues of one donor, Cell Tissue Biol., 2017, vol. 11, p. 95. https://doi.org/10.1134/S1990519X17020092

    Article  Google Scholar 

  64. Voronkina, I.V., Smagina, L.V., Gin, I.I., Krylova, T.A., Musorina, A.S., and Poljanskaya, G.G., Analysis of matrix metalloproteinases activity dynamics during chondrogenic differentiation process of mesenchymal stem cell line derived from Wharton’s jelly of human umbilical cord, Tsitologiya, 2018, vol. 60, no. 9, p. 725. https://doi.org/10.7868/S0041377118090084

    Article  Google Scholar 

  65. Voronkina, I.V., Smagina, L.V., Bildyug, N.B., Musorina, A.S., and Poljanskaya, G.G., Dynamics of matrix metalloproteinase activity and extracellular matrix proteins content in the process of replicative senescence of human mesenchymal stem cells, Cell Tissue Biol., 2020, vol. 14, p. 349. https://doi.org/10.1134/S1990519X20050107

    Article  Google Scholar 

  66. Wangler, S., Kamali, A., Wapp, C., Wuertz-Kozak, K., Häckel, S., Fortes, C., Lorin, M., Benneker, L.M., Haglund, L., Richards, R.G., Alini, M., Peroglio, M., and Sibylle Grad, S., Uncovering the secretome of mesenchymal stromal cells exposed to healthy, traumatic, and degenerative intervertebral discs: a proteomic analysis, Stem Cell Res. Ther., 2021, vol. 12, p. 11. https://doi.org/10.1186/s13287-020-02062-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xiao, Z., Lei, T., Liu, Y., Yang, Y., Bi, W., and Du, H., The potential therapy with dental tissue-derived mesenchymal stem cells in Parkinson’s disease, Stem Cell Res. Ther., 2021, vol. 12, p. 5. https://doi.org/10.1186/s13287-020-01957-4

  68. Yabluchanskiy, A., Ma, Y., Iyer, R.P., Hall, M.E., Lindsey, M.L., Matrix metalloproteinase-9: many shades of function in cardiovascular disease, Physiology, 2013, vol. 28, pp. 391–403. https://doi.org/10.1152/physiol.00029.2013

  69. Yigitbilek, F., Conley, S.M., Tang, H., Saadiq, I.M., Jordan, K.L., Lerman, L.O., and Taner, T., Comparable in vitro function of human liver-derived and adipose tissue-derived mesenchymal stromal cells: implications for cell-based therapy, Front. Cell Dev. Biol., 2021, vol. 9. https://doi.org/10.3389/fcell.2021.641792

  70. Zhang, W., Walboomers, X.F., Shi, S., Fan, M., and Jansen, J.A., Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation, Tissue Eng., 2006, vol. 12, p. 2813. https://doi.org/10.1089/ten.2006.12.2813

  71. Zhang, X., Wang, N., Huang, Y., Li, Y., Li, G., Lin, Y., Atala, A., Hou, J., and Zhao, W., Extracellular vesicles from three dimensional culture of human placental mesenchymal stem cells ameliorated renal ischemia/reperfusion injury, Int. J. Artif. Organs, 2022, vol. 45, no. 2, pp. 181–192. https://doi.org/10.1177/0391398820986809

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The Vertebrate Cell Culture Collection of the Center for Collective Use of the Institute of Cytology, Russian Academy of Sciences, where cell lines have been obtained and characterized, is supported by funding from the Ministry of Education and Science of the Russian Federation, agreement no. 075-15-2021-683.

Funding

The work was carried out within the framework of state order no. AAAA-A19-119020-190093-9 of the Institute of Cytology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Voronkina or G. G. Poljanskaya.

Ethics declarations

The authors declare that they have no conflicts of interest. There were no experiments involving animals or human beings in the work.

Additional information

Abbreviations: ECM—extracellular matrix; MSC—mesenchymal stem cell; RA—replicative aging; MMP—matrix metalloproteinase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronkina, I.V., Smagina, L.V., Koltsova, A.M. et al. The Activity of Metalloproteinases in Two Placenta Mesenchymal Stem-Cell Lines from a Single Donor Differing in Adipogenic Differentiation Potential and the Nature of Replicative Aging. Cell Tiss. Biol. 17, 364–374 (2023). https://doi.org/10.1134/S1990519X23040144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23040144

Keywords:

Navigation