Skip to main content
Log in

Development of a Method for Three-Dimensional Culturing of Human Mesenchymal Stem (Stromal) Cells Using a Cellulose Matrix

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The development of cell-culture methods in 3D systems is important and necessary for the development of significant areas of modern cell biology. When cultivating in a 3D system, the tissue-specific architecture is reproduced, with the real microenvironment and cell behavior being more accurately recreated in vivo. Human mesenchymal stem/stromal cells (MSCs) are usually isolated and cultured as a monolayer 2D culture. In this work, we have developed a method for three-dimensional culturing and tissue-specific decidual differentiation of MSCs isolated from human endometrial tissue using a matrix obtained from a decellularized apple. Decellularized apple matrices have sufficient mechanical strength; are biocompatible, affordable, and easy to use; and have ample possibilities for surface modification. This system of cell culturing is suitable for studies using both confocal microscopy and flow cytometry. The model we have developed can become the basis for creating new cell products and tissue engineering structures for the needs of regenerative biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bartosh, T.J. and Ylostalo, J.H., Efficacy of 3D culture priming is maintained in human mesenchymal stem cells after extensive expansion of the cells, Cells, 2019, vol. 8, p. 1031. https://doi.org/10.3390/cells8091031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baruffaldi, D., Palmara, G., Pirri, C., and Frascella, F., 3D cell culture: recent development in materials with tunable stiffness, ACS Appl. Bio Mater., 2021, vol. 4, p. 2233. https://doi.org/10.1021/acsabm.0c01472

    Article  CAS  PubMed  Google Scholar 

  3. Bilirgen, A.C., Toker, M., Odabas, S., Yetisen, A.K., Garipcan, B., and Tasoglu, S., Plant-based scaffolds in tissue engineering, ACS Biomater. Sci. Eng., 2021, vol. 7, p. 926. https://doi.org/10.1021/acsbiomaterials.0c01527

    Article  CAS  PubMed  Google Scholar 

  4. Bou-Ghannam, S., Kim, K., and Grainger, D.W., 3D cell sheet structure augments mesenchymal stem cell cytokine production, Sci Rep., 2021, vol. 11, p. 8170. https://doi.org/10.1038/s41598-021-87571-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, G., Qi, Y., Niu, L., DI, T., Zhong, J., Fang, T., and Yan, W., Application of the cell sheet technique in tissue engineering, Biomed. Rep., 2015, vol. 3, p. 749. https://doi.org/10.3892/br.2015.522

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cherng, J.-H., Chou, S.-C., Chen, C.-L., Wang, Y.-W., Chang, S.-J., Fan, G.-Y., Leung, F.-S., and Meng, E., Bacterial cellulose as a potential bio-scaffold for effective re-epithelialization, Ther. Pharm., 2021, vol. 13, p. 1592. https://doi.org/10.3390/pharmaceutics13101592

    Article  CAS  Google Scholar 

  7. Domnina, A.P., Novikova, P.V., Fridlyanskaya, I.I., Shilina, M.A., Zenin, V.V., and Nikolsky, N.N., Induction of decidual differentiation of endometrial mesenchymal stem cells, Tsitologiya, 2016, vol. 57, no. 12, p. 880.

    Google Scholar 

  8. Domnina, A.P., Novikova, P.V., Obidina, J.I., Fridlyanskaya, I.I., Alekseenko, L.L., Kozhukharova, I.V., Lyublinskaya, O.G., Zenin, V.V., and Nikolsky, N.N., Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium, Stem Cell Res. Ther., 2018, vol. 9, p. 1. https://doi.org/10.1186/s13287-018-0801-9

    Article  CAS  Google Scholar 

  9. Domnina, A.P., Ivanova, J.V., Alekseenko, L.L., Kozhukharova, I.V., Borodkina, A.V., Pugovkina, N.A., Smirnova, I.S., Lyublinskaya, O.G., Fridlyanskaya, I.I., and Nikolsky, N.N., Three-dimensional compaction switches stress response programs and enhances therapeutic efficacy of endometrial mesenchymal stem/stromal cells, Front. Cell Dev. Biol., 2020, vol. 8, p. 473. https://doi.org/10.3389/fcell.2020.00473

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gargett, C.E. and Masuda, H., Adult stem cells in the endometrium, Mol. Hum. Reprod., 2010, vol. 16, p. 818. https://doi.org/10.1093/molehr/gaq061

    Article  CAS  PubMed  Google Scholar 

  11. Gorgieva, S. and Trček, J., Bacterial cellulose: production, modification and perspectives in biomedical applications, Nanomaterials, 2019, vol. 9, p. 1352. https://doi.org/10.3390/nano9101352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guruswamy Damodaran, R. and Vermette, P., Tissue and organ decellularization in regenerative medicine, Biotech. Progress, 2018, vol. 34, p. 1494. https://doi.org/10.1002/btpr.2699

    Article  CAS  Google Scholar 

  13. Haycock, J.W., 3D cell culture: a review of current approaches and techniques, Methods Mol. Biol., 2011, vol. 695, p. 1. https://doi.org/10.1007/978-1-60761-984-0_1

    Article  CAS  PubMed  Google Scholar 

  14. Husein, K.S. and Thiemermann, C., Mesenchymal stromal cells: current understanding and clinical status, Stem Cells, 2010, vol. 28, p. 585. https://doi.org/10.1002/stem.269

    Article  CAS  Google Scholar 

  15. Jauković, A., Abadjieva, D., and Trivanović, D., Specificity of 3D MSC spheroids microenvironment: impact on MSC behavior and properties, Stem Cell Rev. Rep., 2020, vol. 16, p. 853. https://doi.org/10.1007/s12015-020-10006-9

    Article  CAS  PubMed  Google Scholar 

  16. Jensen, C. and Teng, Y., Is it time to start transitioning from 2D to 3D cell culture?, Front. Mol. Biosci., 2020, vol. 7, p. 33. https://doi.org/10.3389/fmolb.2020.00033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kouroupis, D. and Correa, D., Increased mesenchymal stem cell functionalization in three-dimensional manufacturing settings for enhanced therapeutic applications, Front. Bioeng. Biotechnol., 2021, vol. 9, p. 621748. https://doi.org/10.3389/fbioe.2021.621748

    Article  PubMed  PubMed Central  Google Scholar 

  18. Langhans, S.A., Three-dimensional in vitro cell culture models in drug discovery and drug repositioning, Front. Pharmacol., 2018, vol. 9, p. 6. https://doi.org/10.3389/fphar.2018.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, J., Jung, H., and Park, N., Induced osteogenesis in plants decellularized scaffolds, Sci. Rep., 2019, vol. 9, p. 20194. https://doi.org/10.1038/s41598-019-56651-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lyublinskaya, O.G., Ivanova, J.S., Pugovkina, N.A., Kozhukharova, I.V., Kovaleva, Z.V., Shatrova, A.N., Aksenov, N.D., Zenin, V.V., Kaulin, Y.A., Gamaley, I.A., and Nikolsky, N.N., Redox environment in stem and differentiated cells: a quantitative approach, Redox Biol., 2017, vol. 12, p. 758. https://doi.org/10.1016/j.redox.2017.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meng, X., Ichim, T.E., Zhong, J., Rogers, A., Yin, Z., Jackson, J., Wang, H., Ge, W., Bogin, V., Chan, K.W., Thébaud, B., and Riordan, N.H., Endometrial regenerative cells: a novel stem cell population, J. Transl. Med., 2007, vol. 5, p. 57. https://doi.org/10.1186/1479-5876-5-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Modulevsky, D.J., Lefebvre, C., Haase, K., Al-Rekabi, Z., and Pelling, A.E., Apple derived cellulose scaffolds for 3D mammalian cell culture, PLoS One, 2014, vol. 9, p. e97835. https://doi.org/10.1371/journal.pone.0097835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Modulevsky, D.J., Cuerrier, C.M., and Pelling, A.E., Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials, PLoS One, 2016, vol. 11, p. e0157894. https://doi.org/10.1371/journal.pone.0157894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Musina, R.A., Tarusova, O.V., Solovyova, E.V., Sukhikh, G.T., and Belyavski, A.V., Endometrial mesenchymal stem cells isolated from the menstrual blood, Kl. Tekhn. Biol. Med., 2008, vol. 145, p. 539.

    CAS  Google Scholar 

  25. Patel, A.N., Park, E., Kuzman, M., Benetti, F., Silva, F.J., and Allickson, J.G., Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation, Cell Transplant., 2008, vol. 17, p. 303. https://doi.org/10.3727/096368908784153922

    Article  PubMed  Google Scholar 

  26. Phan, N.V., Wright, T., Rahman, M.M., Xu, J., and Coburn, J.M., In vitro biocompatibility of decellularized cultured plant cell derived matrices, ACS Biomater. Sci. Eng., 2020, vol. 6, p. 822. https://doi.org/10.1021/acsbiomaterials.9b00870

    Article  CAS  PubMed  Google Scholar 

  27. Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., and Gatenholm, P., Bacterial cellulose as a potential scaffold for tissue engineering of cartilage, Biomaterials, 2005, vol. 26, p. 419. https://doi.org/10.1016/j.biomaterials.2004.02.049

    Article  CAS  PubMed  Google Scholar 

  28. Hu Xinqiang, Xia Zengzilu, and Cai Kaiyong, Recent advances in 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation, J. Mater. Chem. B, 2022, vol. 10, p. 1486. https://doi.org/10.1039/D1TB02537F

    Article  CAS  PubMed  Google Scholar 

  29. Zack, G.W., Rogers, W.E., and Latt, S.A., Automatic measurement of sister chromatid exchange frequency, J. Histochem. Cytochem., 1977, vol. 25, p. 741. https://doi.org/10.1177/25.7.70454

    Article  CAS  PubMed  Google Scholar 

  30. Zemelko, V.I., Grinchuk, T.M., Domnina, A.P., Artzibasheva, I.V., Zenin, V.V., Kirsanov, A.A., Bichevaia, N.K., Korsak, V.S., and Nikolsky, N.N., Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization and use as feeder layer for maintenance of human embryonic stem cell lines, Cell Tissue Biol., 2012, vol. 6, p. 1.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Vertebrate Cell Culture Collection of Shared Research Facility of the Institute of Cytology, Russian Academy of Sciences (St. Petersburg), from which eMSCs were obtained, was supported by the Ministry of Education and Science of the Russian Federation, agreement no. 075-15-2021-683.

Funding

This work was supported financially by the Russian Science Foundation, project no. 22-74-10126.

Author information

Authors and Affiliations

Authors

Contributions

I.K. Kuneev and Yu.S. Ivanova (equal contribution): obtaining and preparing cellulose matrices, culturing cells, population of matrices with cells, studying the properties of cells in matrices, participating in writing the text of the article; Yu.A. Nashchekina: development of a method for coating cellulose matrices with collagen, E.K. Patronova: data processing; A.V. Sokolova: participation in the study of the properties of cells in matrices; A.P. Domnina: plan of experiments, processing and analysis of the results, participation in writing and editing the text of the article.

Corresponding author

Correspondence to A.P. Domnina.

Ethics declarations

The authors declare that they have no conflicts of interest. The authors did not conduct experiments using animals or human beings.

Additional information

Abbreviations: eMSC—endometrial mesenchymal stem (stromal) cell; EdU—5-ethynyl-2'-deoxyuridine; PBS—phosphate buffered saline; PI—propidium iodide; SDS—sodium dodecyl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuneev, I.K., Ivanova, Y.S., Nashchekina, Y.A. et al. Development of a Method for Three-Dimensional Culturing of Human Mesenchymal Stem (Stromal) Cells Using a Cellulose Matrix. Cell Tiss. Biol. 17, 388–397 (2023). https://doi.org/10.1134/S1990519X2304003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X2304003X

Keywords:

Navigation