Skip to main content
Log in

Anisotropy of out-of-phase magnetic susceptibility in titanomagnetite-bearing rocks due to weak field hysteresis

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Properties of the out-of-phase susceptibility (opMS) of rocks and artificial specimens whose opMS is due to weak-field hysteresis, containing magnetite and titanomagnetite, were investigated and theoretical relation between degrees of the in-phase susceptibility (ipMS) and opAMS was confirmed experimentally. Pure magnetite shows virtually no field dependence of ipMS and zero opMS in fields less than 500 A m−1. In low-Ti titanomagnetite, the intensity of the ipMS variation is very low, hardly reaching 1% of the initial value. In high-Ti titanomagnetite, the intensity of ipMS variation is relatively strong reaching 50% of the initial value and that of opMS variation is even much stronger reaching multiples of the initial value. The anisotropy of ipMS (ipAMS) of artificial specimens consisting of disseminated magnetite powder in plaster of Paris is well defined, while the opAMS is virtually undetectable. In titanomagnetite-bearing volcanic and dyke rocks, the ipAMS evidently reflects the character of lava flow. The opAMS ellipsoids resemble the ipAMS ellipsoids, the degree of opAMS being significantly higher than that of ipAMS. The principal directions of ipAMS and opAMS are related closely in specimens with high-Ti titanomagnetites and only poorly in specimens with low-Ti titanomagnetites. In specimens with high-Ti titanomagnetites, there is a linear relation and very strong correlation (R2 = 0.95) between the degree of opAMS and the square of the degree of ipAMS corresponding to the theoretical relation between these degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borradaile G.J., Puumala M. and Stupavski M., 1992. Anisotropy of complex susceptibility as an indicator of strain and petrofabric in rocks bearing sulphides. Tectonophysics, 202, 309–318

    Article  Google Scholar 

  • Chadima M., Cajz V. and Týcová P., 2009. On the interpretation of normal and inverse magnetic fabric in dikes: Examples from the Eger Graben, NW Bohemian Massif. Tectonophysics, 466, 47–63

    Article  Google Scholar 

  • Cogné J.-P., 1987. TRM deviations of anisotropic assemblages of multidomain magnetites. Geophys. J. R. Astr. Soc., 90, 1013–1023

    Article  Google Scholar 

  • Egli R., 2009. Magnetic susceptibility measurements as a function of temperature and frequency I: inversion theory. Geophys. J. Int., 177, 395–420

    Article  Google Scholar 

  • Hrouda F., 2002. Low-field variation of magnetic susceptibility and its effect on the anisotropy of magnetic susceptibility of rocks. Geophys. J. Int., 150, 715–723

    Article  Google Scholar 

  • Hrouda F., 2009. Determination of field-independent and field-dependent components of anisotropy of susceptibility through standard AMS measurement in variable low fields I: Theory. Tectonophysics, 466, 114–122

    Article  Google Scholar 

  • Hrouda F., Chlupáčová M. and Mrázová Š., 2006. Low-field variation of magnetic susceptibility as a tool for magnetic mineralogy of rocks. Phys. Earth Planet. Inter., 154, 323–336

    Article  Google Scholar 

  • Hrouda F., Pokorný J., Ježek J. and Chadima M., 2013. Out-of-phase magnetic susceptibility of rocks and soils: a rapid tool for magnetic granulometry. Geophys. J. Int., 194, 170–181

    Article  Google Scholar 

  • Hrouda F., Chadima M. Ježek J. and Pokorný J., 2017. Anisotropy of out-of-phase magnetic susceptibility of rocks as a tool for direct determination of magnetic sub-fabrics of some minerals: An introductory study. Geophys. J. Int., 208, 385–402

    Article  Google Scholar 

  • Hrouda F., Chadima M., Ježek J. and Kadlec J., 2018. Anisotropies of in-phase, out-of-phase, and frequency-dependent susceptibilities in three loess/palaeosol profiles in the Czech Republic; methodological implications. Stud. Geophys. Geod., 62, 272–290

    Article  Google Scholar 

  • Hrouda F., Ježek J. and Chadima M., 2020. Anisotropy of out-of-phase magnetic susceptibility as a potential tool for distinguishing geologically and physically controlled inverse magnetic fabrics in volcanic dykes. Phys. Earth Planet. Inter., 307, https://doi.org/10.1016/j.pepi.2020.106551

  • Hrouda F., Chadima M. and Ježek J., 2022a. Anisotropy of out-of-phase magnetic susceptibility and its potential for rock fabric studies: a review. Geosciences, 12, https://doi.org/10.3390/geosciences12060234

  • Hrouda F., Franěk J., Gilder S., Chadima M., Ježek J., Mrázová S., Poňavič M. and Racek M., 2022b. Lattice preferred orientation of graphite determined by the anisotropy of out-of-phase magnetic susceptibility. J. Struct. Geol., 154, https://doi.org/10.1016/j.jsg.2021.104491

  • Jackson M., 2003. Imaginary susceptibility, a primer. IRM Quarterly, 13(1), 10–11

    Google Scholar 

  • Jackson M., Moskowitz B., Rosenbaum J. and Kissel C., 1998. Field-dependence of AC susceptibility in titanomagnetites. Earth Planet. Sci. Lett., 157, 129–139

    Article  Google Scholar 

  • Jelínek V., 1977. The Statistical Theory of Measuring Anisotropy of Magnetic Susceptibility of Rocks and Its Application. Geofyzika n.p., Brno, Czech Republic

    Google Scholar 

  • Jelínek V., 1981. Characterization of magnetic fabric of rocks. Tectonophysics, 79, T63–T67

    Article  Google Scholar 

  • Jelíinek V., 1993. Theory and measurement of the anisotropy of isothermal remanent magnetization of rocks. Travaux Geophysiques, 37, 124–134

    Google Scholar 

  • Ježek J. and Hrouda F., 2022. Startingly strong shape anisotropy of AC magnetic susceptibility due to eddy currents. Geophys. J. Int., 229, 359–369

    Article  Google Scholar 

  • Knight M.D. and Walker G.P.L., 1988. Magma flow directions in dikes of the Koolan Complex, Oahu, determined from magnetic fabric studies. J. Geophys. Res., 93, 4308–4319

    Article  Google Scholar 

  • Kratinová Z., Závada P., Hrouda F. and Schulmann K., 2006. Non-scaled analogue modelling of AMS development during viscous flow: A simulation on diapir-like structures. Tectonophysics, 418, 51–61

    Article  Google Scholar 

  • Kontny A., Woodland A.B. and Koch M., 2004. Temperature-dependent magnetic susceptibility behaviour of spinelloid and spinel solid solutions in the system Fe2SiO4-Fe3O4 and (Fe,Mg)2SiO4-Fe3O4. Phys. Chem. Miner., 31, 28–40

    Article  Google Scholar 

  • Kropáček V., 1976. Changes of the magnetic properties of Tertiary alkaline basalts under oxidation of titanomagnetites. Publ. Inst. Geophys. Pol. Acad. Sci., C-1(102), 75–85

    Google Scholar 

  • Kropáček V. and Pokorná Z., 1973. Magnetische Eigenschaften basischer neovulkanischer Gesteine der Boehmischen Masse und ihre Zusammenhaenge mit petrologischen Charakteristiken. Geofyz. Sbornik, 21, 287–348 (in German)

    Google Scholar 

  • Lattard D., Engelmann R., Kontny A. and Sauerzapf U., 2006. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: Effects of composition, crystal chemistry, and thermomagnetic methods. J. Geophys. Res.-Solid Earth, 111, B12S28, https://doi.org/10.1029/2006JB004591

    Article  Google Scholar 

  • Markert H. and Lehmann A., 1996. Three-dimensional Rayleigh hysteresis of oriented core samples from the German Continental Deep Drilling Program: susceptibility tensor, Rayleigh tensor, three-dimensional Rayleigh law. Geophys. J. Int., 127, 201–214

    Article  Google Scholar 

  • Moskowitz B.M., Jackson M. and Kissel C., 1998. Low temperature magnetic behavior of titanomagnetites. Earth Planet. Sci. Lett., 157, 141–149

    Article  Google Scholar 

  • Nagata T., 1961. Rock Magnetism. Maruzen, Tokyo, Japan

    Google Scholar 

  • Parma J., Hrouda F., Pokorný J., Wohlgemuth J., Šuza P., Šilinger P. and Zapletal K., 1993. A technique for measuring temperature dependent susceptibility of weakly magnetic rocks. EOS Trans. AGU, 113

  • Petrovský E. and Kapička A., 2006. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res.-Solid Earth, 111, B12S27, https://doi.org/10.1029/2006JB004507

    Article  Google Scholar 

  • Pokorný P., Pokorný J., Chadima M., Hrouda F., Studýnka J. and Vejlupek J., 2016. KLY5 Kappabridge: High sensitivity and anisotropy meter precisely decomposing in-phase and out-of-phase components. Abstract. Geophys. Res. Abs., 18, EGU2016–15806

    Google Scholar 

  • Raposo M.I.B., 2011. Magnetic fabric of the Brazilian dike swarms. A review. In: Petrovský E., Herrero-Bervera E., Harinarayana T. and Ivers D. (Eds), The Earth’s Magnetic Interior. Springer-Verlag, Heidelberg, Germany, 247–262

    Chapter  Google Scholar 

  • Schnabl P., Novák J.K., Cajz V., Lang M., Balogh K., Pecskay Z., Chadima M., Šlechta S., Kohout T., Pruner P. and Ulrych J., 2010. Magnetic properties of high-Ti basaltic rocks from the Krušné Hory/Erzgebirge Mts. (Bohemia/Saxony), and their relation to mineral chemistry. Stud. Geophys. Geod., 54, 77–94

    Article  Google Scholar 

  • Stacey F.D. and Benerjee S.K., 1974. The Physical Principles of Rock Magnetism. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Stephenson A., Sadikun S. and Potter D.K., 1986. A theoretical and experimental comparison of the anisotropies of magnetic susceptibility and remanence in rocks and minerals. Geophys. J. R. Astr. Soc., 84, 185–200

    Article  Google Scholar 

  • Studýnka J., Chadima M. and Suza P., 2014. Fully automated measurement of anisotropy of magnetic susceptibility using 3D rotator. Tectonophysics, 629, 6–13

    Article  Google Scholar 

  • Uyeda S., Fuller M.D., Belshe J.C. and Girdler R.W., 1963. Anisotropy of magnetic susceptibility of rocks and minerals. J. Geophys. Res., 68, 279–292

    Article  Google Scholar 

  • Vahle C. and Kontny A., 2005. The use of field dependence of AC susceptibility for the interpretation of magnetic mineralogy and magnetic fabrics in the HSDP-2 basalts, Hawaii. Earth Planet. Sci. Lett., 238, 110–129

    Article  Google Scholar 

  • Worm H.-U., Clark D. and Dekkers M.J., 1993. Magnetic susceptibility of pyrrhotite: grain size, field and frequency dependence. Geophys. J. Int., 114, 127–137

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Czech Science Foundation project No. 19-17442S (F.H. and J.J.). The research was also conducted within research plan RVO 67985831 of the Institute of Geology of the Czech Academy of Sciences (M.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Hrouda.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrouda, F., Ježek, J. & Chadima, M. Anisotropy of out-of-phase magnetic susceptibility in titanomagnetite-bearing rocks due to weak field hysteresis. Stud Geophys Geod 67, 143–160 (2023). https://doi.org/10.1007/s11200-023-0603-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-023-0603-0

Keywords

Navigation