Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-04T08:14:06.826Z Has data issue: false hasContentIssue false

Information gain as a tool for assessing biosignature missions

Published online by Cambridge University Press:  04 August 2023

Benjamin Fields
Affiliation:
Blue Marble Space Institute of Science, Seattle, WA 98104, USA Wheaton College, Wheaton, IL 60187, USA
Sohom Gupta
Affiliation:
Blue Marble Space Institute of Science, Seattle, WA 98104, USA Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
McCullen Sandora*
Affiliation:
Blue Marble Space Institute of Science, Seattle, WA 98104, USA
*
Corresponding author: McCullen Sandora; Email: mccullen@bmsis.org

Abstract

We propose the mathematical notion of information gain as a way of quantitatively assessing the value of biosignature missions. This makes it simple to determine how mission value depends on design parameters, prior knowledge and input assumptions. We demonstrate the utility of this framework by applying it to a plethora of case examples: the minimal number of samples needed to determine a trend in the occurrence rate of a signal as a function of an environmental variable, and how much cost should be allocated to each class of object; the relative impact of false positives and false negatives, with applications to Enceladus data and how best to combine two signals; the optimum tradeoff between resolution and coverage in the search for lurkers or other spatially restricted signals, with application to our current state of knowledge for solar system bodies; the best way to deduce a habitability boundary; the optimal amount of money to spend on different mission aspects; when to include an additional instrument on a mission; the optimal mission lifetime; and when to follow/challenge the predictions of a habitability model. In each case, we generate concrete, quantitative recommendations for optimizing mission design, mission selection and/or target selection.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Equal contribution

References

Abelson, PH (1989) Voyager 2 at Neptune and triton. Science 246, 13691369.CrossRefGoogle ScholarPubMed
Affholder, A, Guyot, F, Sauterey, B, Ferrière, R and Mazevet, S (2021) Bayesian analysis of Enceladus's plume data to assess methanogenesis. Nature Astronomy 5, 805814.CrossRefGoogle Scholar
Bains, W and Petkowski, JJ (2021) Astrobiologists are rational but not Bayesian. International Journal of Astrobiology 20, 312318.CrossRefGoogle Scholar
Balbi, A, Hami, M and Kovačević, A (2020) The habitability of the galactic bulge. Life 10.CrossRefGoogle ScholarPubMed
Barber, DJ and Scott, ER (2002) Origin of supposedly biogenic magnetite in the Martian meteorite Allan hills 84001. Proceedings of the National Academy of Sciences 99, 65566561.CrossRefGoogle ScholarPubMed
Benford, J (2019) Looking for lurkers: co-orbiters as seti observables. The Astronomical Journal 158, 150.CrossRefGoogle Scholar
Casella, G and Berger, R (2001) Statistical Inference. Cambridge: Duxbury Resource Center.Google Scholar
Catling, DC, Krissansen-Totton, J, Kiang, NY, Crisp, D, Robinson, TD, DasSarma, S, Rushby, AJ, Del Genio, A, Bains, W and Domagal-Goldman, S (2018) Exoplanet biosignatures: a framework for their assessment. Astrobiology 18, 709738.CrossRefGoogle ScholarPubMed
Charnov, EL (1976) Optimal foraging, the marginal value theorem. Theoretical Population Biology 9, 129136.CrossRefGoogle ScholarPubMed
Chrystal, KA, Mizen, PD and Mizen, P (2003) Goodhart's law: its origins, meaning and implications for monetary policy. Central Banking, Monetary Theory and Practice: Essays in Honour of Charles Goodhart 1, 221243.Google Scholar
Cockell, CS, Kaltenegger, L and Raven, JA (2009) Cryptic photosynthesis–extrasolar planetary oxygen without a surface biological signature. Astrobiology 9, 623636.CrossRefGoogle ScholarPubMed
Daflon, S and Cunha, K (2004) Galactic metallicity gradients derived from a sample of OB stars. The Astrophysical Journal 617, 1115.CrossRefGoogle Scholar
Figueredo, PH and Greeley, R (2000) Geologic mapping of the northern leading hemisphere of Europa from Galileo solid-state imaging data. Journal of Geophysical Research: Planets 105, 2262922646.CrossRefGoogle Scholar
Fischer, DA and Valenti, J (2005) The planet-metallicity correlation. The Astrophysical Journal 622, 1102.CrossRefGoogle Scholar
Foote, S, Sinhadc, P, Mathis, C and Walker, SI (2022) False positives and the challenge of testing the alien hypothesis. preprint arXiv:2207.00634.Google Scholar
Fortney, JJ, Dawson, RI and Komacek, TD (2021) Hot Jupiters: origins, structure, atmospheres. Journal of Geophysical Research: Planets 126, e2020JE006629.CrossRefGoogle Scholar
Freitas, RA (1983) The search for extraterrestrial artifacts(seta). British Interplanetary Society, Journal(Interstellar Studies) 36, 501506.Google Scholar
Freitas, RA Jr (1985) There is no fermi paradox. Icarus 62, 518520.CrossRefGoogle Scholar
Gray, RH (2015) The fermi paradox is neither fermi's nor a paradox. Astrobiology 15, 195199.CrossRefGoogle ScholarPubMed
Green, J, Hoehler, T, Neveu, M, Domagal-Goldman, S, Scalice, D and Voytek, M (2021) Call for a framework for reporting evidence for life beyond earth. Nature 598, 575579.CrossRefGoogle ScholarPubMed
Haqq-Misra, J and Kopparapu, RK (2012) On the likelihood of non-terrestrial artifacts in the solar system. Acta Astronautica 72, 1520.CrossRefGoogle Scholar
Harman, CE and Domagal-Goldman, S (2018) Biosignature false positives. Technical report, Springer International Publishing.CrossRefGoogle Scholar
Hawkins, S, Boldt, J, Darlington, E, Espiritu, R, Gold, R, Gotwols, B, Grey, M, Hash, C, Hayes, J, Jaskulek, S, Kardian, C, Keller, M, Malaret, E, Murchie, S, Murphy, P, Peacock, K, Prockter, L, Reiter, R, Robinson, M, Schaefer, E, Shelton, R, Sterner, R, Taylor, H, Watters, T and Williams, B (2007) The mercury dual imaging system on the messenger spacecraft. Space Science Reviews 131, 247338.CrossRefGoogle Scholar
Jiménez-Torres, JJ, Pichardo, B, Lake, G and Segura, A (2013) Habitability in different milky way stellar environments: A stellar interaction dynamical approach. Astrobiology 13, 491509.CrossRefGoogle ScholarPubMed
Johnson, JL and Li, H (2012) The first planets: the critical metallicity for planet formation. The Astrophysical Journal 751, 81.CrossRefGoogle Scholar
Johnson, S, Graham, H, Anslyn, E, Conrad, P, Cronin, L, Ellington, A, Elsila, J, Girguis, P, House, C and Kempes, C (2019) Agnostic approaches to extant life detection. Mars Extant Life: What's Next? 2108, 5026.Google Scholar
Keeter, B (2017) Pluto's icy plains in highest-resolution views from new horizons. https://www.nasa.gov/image-feature/pluto-s-icy-plains-in-highest-resolution-views-from-new-horizons (Accessed January 31, 2023).Google Scholar
Kirk, RL, Howington-Kraus, E, Rosiek, MR, Anderson, JA, Archinal, BA, Becker, KJ, Cook, DA, Galuszka, DM, Geissler, PE, Hare, TM, Holmberg, IM, Keszthelyi, LP, Redding, BL, Delamere, WA, Gallagher, D, Chapel, JD, Eliason, EM, King, R and McEwen, AS (2008) Ultrahigh resolution topographic mapping of mars with mro hirise stereo images: meter-scale slopes of candidate phoenix landing sites. Journal of Geophysical Research: Planets 113.CrossRefGoogle Scholar
Lazio, J (2022) Technosignatures in the solar system. In The First Penn State SETI Symposium. Zenodo.Google Scholar
Levine, TR, Weber, R, Hullett, C, Park, HS and Lindsey, LLM (2008) A critical assessment of null hypothesis significance testing in quantitative communication research. Human Communication Research 34, 171187.CrossRefGoogle Scholar
Lineweaver, CH, Fenner, Y and Gibson, BK (2004) The galactic habitable zone and the age distribution of complex life in the milky way. Science 303, 5962.CrossRefGoogle ScholarPubMed
Lorenz, RD (2019) Calculating risk and payoff in planetary exploration and life detection missions. Advances in Space Research 64, 944956.CrossRefGoogle Scholar
Lyu, Z, Shao, N, Akinyemi, T and Whitman, WB (2018) Methanogenesis. Current Biology 28, R727R732.CrossRefGoogle ScholarPubMed
Meadows, V, Graham, H, Abrahamsson, V, Adam, Z, Amador-French, E, Arney, G, Barge, L, Barlow, E, Berea, A, Bose, M, Bower, D, Chan, M, Cleaves, J, Corpolongo, A, Currie, M, Domagal-Goldman, S, Dong, C, Eigenbrode, J, Enright, A, Fauchez, TJ, Fisk, M, Fricke, M, Fujii, Y, Gangidine, A, Gezer, E, Glavin, D, Grenfell, JL, Harman, S, Hatzenpichler, R, Hausrath, L, Henderson, B, Johnson, SS, Jones, A, Hamilton, T, Hickman-Lewis, K, Jahnke, L, Kacar, B, Kopparapu, R, Kempes, C, Kish, A, Krissansen-Totton, J, Leavitt, W, Komatsu, Y, Lichtenberg, T, Lindsay, M, Maggiori, C, Marais, D, Mathis, C, Morono, Y, Neveu, M, Ni, G, Nixon, C, Olson, S, Parenteau, N, Perl, S, Quinn, R, Raj, C, Rodriguez, L, Rutter, L, Sandora, M, Schmidt, B, Schwieterman, E, Segura, A, Şekerci, F, Seyler, L, Smith, H, Soares, G, Som, S, Suzuki, S, Teece, B, Weber, J, Simon, FW, Wong, M and Yano, H (2022) Community report from the biosignatures standards of evidence workshop. preprint arXiv:2210.14293.Google Scholar
Mousis, O, Lunine, J, Waite, J, Magee, B, Lewis, W, Mandt, K, Marquer, D and Cordier, D (2016) Formation conditions of enceladus and origin of its methane reservoir. The Astrophysical Journal 701, 3942.CrossRefGoogle Scholar
Mukherjee, R and Sen, B (2019) On efficiency of the plug-in principle for estimating smooth integrated functionals of a nonincreasing density. Electronic Journal of Statistics 13, 44164448.CrossRefGoogle Scholar
Neveu, M, Hays, LE, Voytek, MA, New, MH and Schulte, MD (2018) The ladder of life detection. Astrobiology 18, 13751402.CrossRefGoogle ScholarPubMed
Olkin, CB, Spencer, JR, Grundy, WM, Parker, AH, Beyer, RA, Schenk, PM, Howett, CJ, Stern, SA, Reuter, DC, Weaver, HA, Young, LA, Ennico, K, Binzel, RP, Buie, MW, Cook, JC, Cruikshank, DP, Ore, CMD, Earle, AM, Jennings, DE, Singer, KN, Linscott, IE, Lunsford, AW, Protopapa, S, Schmitt, B, Weigle, E and the New Horizons Science Team (2017) The global color of Pluto from new horizons. The Astronomical Journal 154, 258.CrossRefGoogle Scholar
Park, RS, Vaughan, AT, Konopliv, AS, Ermakov, AI, Mastrodemos, N, Castillo-Rogez, JC, Joy, SP, Nathues, A, Polanskey, CA, Rayman, MD, Riedel, JE, Raymond, CA, Russell, CT and Zuber, MT (2019) High-resolution shape model of Ceres from stereophotoclinometry using Dawn imaging data. Icarus 319, 812827.CrossRefGoogle Scholar
Patterson, GW, Collins, GC, Head, JW, Pappalardo, RT, Prockter, LM, Lucchitta, BK and Kay, JP (2010) Global geological mapping of Ganymede. Icarus 207, 845867.CrossRefGoogle Scholar
Pham-Gia, T (2000) Distributions of the ratios of independent beta variables and applications. Communications in Statistics - Theory and Methods 29, 26932715.CrossRefGoogle Scholar
Pohorille, A and Sokolowska, J (2020) Evaluating biosignatures for life detection. Astrobiology 20, 12361250.CrossRefGoogle ScholarPubMed
Prantzos, N (2008) On the ‘galactic habitable zone’. Strategies of Life Detection, pp. 313–322.CrossRefGoogle Scholar
Rauber, T, Braun, T and Berns, K (2008) Probabilistic distance measures of the Dirichlet and beta distributions. Pattern Recognition 41, 637645.CrossRefGoogle Scholar
Roatsch, Th, Waehlisch, M, Giese, B, Hoffmeister, A, Matz, K-D, Scholten, F, Kuhn, A, Wagner, R, Neukum, G, Helfenstein, P and Porco, C (2008) High-resolution Enceladus atlas derived from Cassini-ISS images. Planetary and Space Science 56, 109116.CrossRefGoogle Scholar
Robinson, MS, Brylow, SM, Tschimmel, M, Humm, D, Lawrence, SJ, Thomas, PC, Denevi, BW, Bowman-Cisneros, E, Zerr, J, Ravine, MA, Caplinger, MA, Ghaemi, FT, Schaffner, JA, Malin, MC, Mahanti, P, Bartels, A, Anderson, J, Tran, TN, Eliason, EM, McEwen, AS, Turtle, E, Jolliff, BL and Hiesinger, H (2010) Lunar Reconnaissance Orbiter Camera (lROC) instrument overview. Space Science Reviews 150, 81124.CrossRefGoogle Scholar
Sandora, M and Silk, J (2020) Biosignature surveys to exoplanet yields and beyond. Monthly Notices of the Royal Astronomical Society 495, 10001015.CrossRefGoogle Scholar
Saunders, RS, Spear, AJ, Allin, PC, Austin, RS, Berman, AL, Chandlee, RC, Clark, J, Decharon, AV, De Jong, EM, Griffith, DG, Gunn, JM, Hensley, S, Johnson, WTK, Kirby, CE, Leung, KS, Lyons, DT, Michaels, GA, Miller, J, Morris, RB, Morrison, AD, Piereson, RG, Scott, JF, Shaffer, SJ, Slonski, JP, Stofan, ER, Thompson, TW and Wall, SD (1992) Magellan mission summary. Journal of Geophysical Research: Planets 97, 1306713090.CrossRefGoogle Scholar
Sheikh, SZ (2020) Nine axes of merit for technosignature searches. International Journal of Astrobiology 19, 237243.CrossRefGoogle Scholar
Waite, JH, Glein, CR, Perryman, RS, Teolis, BD, Magee, BA, Miller, G, Grimes, J, Perry, ME, Miller, KE, Bouquet, A, Lunine, JI, Brockwell, T and Bolton, SJ (2017) Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155159.CrossRefGoogle ScholarPubMed
Westall, F, Foucher, F, Bost, N, Bertrand, M, Loizeau, D, Vago, JL, Kminek, G, Gaboyer, F, Campbell, KA, Bréhéret, J-G, Gautret, P and Cockell, CS (2015) Biosignatures on mars: what, where, and how? implications for the search for Martian life. Astrobiology 15, 9981029.CrossRefGoogle ScholarPubMed
Yung, YL, Chen, P, Nealson, K, Atreya, S, Beckett, P, Blank, JG, Ehlmann, B, Eiler, J, Etiope, G, Ferry, JG, Forget, F, Gao, P, Hu, R, Kleinböhl, A, Klusman, R, Lefèvre, F, Miller, C, Mischna, M, Mumma, M, Newman, S, Oehler, D, Okumura, M, Oremland, R, Orphan, V, Popa, R, Russell, M, Shen, L, Lollar, BS, Staehle, R, Stamenković, V, Stolper, D, Templeton, A, Vandaele, AC, Viscardy, S, Webster, CR, Wennberg, PO, Wong, ML and Worden, J (2018) Methane on mars and habitability: challenges and responses. Astrobiology 18, 12211242.CrossRefGoogle ScholarPubMed
Zurek, RW and Smrekar, SE (2007) An overview of the Mars Reconnaissance Orbiter (MRO) science mission. Journal of Geophysical Research: Planets 112.CrossRefGoogle Scholar