Skip to main content
Log in

Decomposition of Rod Displacements via Bernoulli–Navier Displacements. Application: A Loading of the Rod with Shearing

  • Research
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Within the framework of linear elasticity, we show that any displacement of a straight rod is the sum of a Bernoulli–Navier displacement and two terms, one for shearing and the other for warping. Then, we load a straight rod so that bending and shear contribute the same to the rotations of the cross-section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The map \(X\in {\mathbb{R}}^{3}\longmapsto \Theta (x_{1}){\mathbf{e}}_{1} \land X\) represents a small rotation of the cross-section \(\{x_{1}\}\times \omega _{\delta}\) with axis directed by \({\mathbf{e}}_{1}\) and angle approximately equal to \(\Theta (x_{1})\), \(\Theta (x_{1})\) is the torsion angle.

  2. the square of the \(L^{2}\) norm of the strain tensor

  3. \([t]\) is the integer part of \(t\in {\mathbb{R}}\)

  4. If we only assume \(g_{2}\) and \(g_{3}\in H^{1}(0,L)\) we can prove that \(\|e(u_{\delta}-u^{ap}_{\delta})\|_{L^{2}({\mathcal{P}}_{\delta})}\leq C\delta ^{7/2}(\|g_{2}\|_{H^{1}(0,L)}+\|g_{3}\|_{H^{1}(0,L)})\). In this case too, all the convergences in Proposition 6.1 are strong.

References

  1. Antman, S.S.: The theory of rods. In: Flügge, S., Truesdell, C. (eds.) Handbuch der Physik, vol. VIa/2, pp. 641–703. Springer, Berlin (1972)

    Google Scholar 

  2. Hirsch, F., Lacombe, G.: Éléments d’analyse fonctionnelle. Dunod, Paris (1999)

    MATH  Google Scholar 

  3. Brézis, H.: Analyse fonctionnelle. Dunod, Paris (1999)

    MATH  Google Scholar 

  4. Blanchard, D., Gaudiello, A., Griso, G.: Junction of a periodic family of elastic rods with a \(3d\) plate. Part I. J. Math. Pures Appl. (9) 88(1), 149–190 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanchard, D., Gaudiello, A., Griso, G.: Junction of a periodic family of elastic rods with a thin plate. Part II. J. Math. Pures Appl. (9) 88(2), 1–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchard, D., Griso, G.: Microscopic effects in the homogenization of the junction of rods and a thin plate. Asymptot. Anal. 56(1), 1–36 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Blanchard, D., Griso, G.: Decomposition of deformations of thin rods. Application to nonlinear elasticity. Anal. Appl. 7(1), 21–71 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G.: Mathematical Elasticity, Vol. I. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  9. Griso, G.: Décomposition des déplacements d’une poutre: simplification d’un problème d’élasticité. C. R., Méc. 333(6), 475–480 (2005)

    Article  MATH  Google Scholar 

  10. Griso, G.: Asymptotic behavior of rods by the unfolding method. Math. Methods Appl. Sci. 27, 2081–2110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Griso, G.: Decomposition of displacements of thin structures. J. Math. Pures Appl. 89, 199–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Griso, G.: Asymptotic behavior of structures made of curved rods. Anal. Appl. 6(1), 11–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Griso, G., Villanueva-Pesqueira, M.: Straight rod with different order of thickness. Asymptot. Anal. 94(3–4), 255–291 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Le Dret, H.: Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero. Asymptot. Anal. 10, 367–402 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Murat, F., Sili, A.: Comportement asymptotique des solutions du système de l’élasticité linéarisée anisotrope hétérogène dans des cylindres minces. C. R. Acad. Sci., Sér. 1 Math. 328, 179–184 (1999)

    MATH  Google Scholar 

  16. Trabucho, L., Viano, J.M.: Mathematical Modeling of Rods, Hand-Book of Numerical Analysis, vol. 4. North-Holland, Amsterdam (1996)

    Google Scholar 

  17. Washizu, K.: Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford (1968)

    MATH  Google Scholar 

  18. Percivale, D.: Thin elastic rods: the variational approach to St. Venant’s problem. Asymptot. Anal. 20, 39–60 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Casado-Diaz, J., Luna-Lainez, M., Suarez-Gruau, F.J.: A decomposition result for the pressure of a fluid in a thin domain and extensions to elasticity problems. SIAM J. Math. Anal. 52(3), 2201–2236 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Griso, G., Orlik, J., Wackerle, S.: Asymptotic behavior for textiles. SIAM J. Math. Anal. (2020)

  21. Griso, G., Khilkova, L., Orlik, J., Sivak, O.: Asymptotic behavior of stable structures made of beams. J. Elast. 143(2), 239–299 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Griso, G., Khilkova, L., Orlik, J.: Asymptotic behavior of unstable structures made of beams. J. Elast. 1–70 (2022)

  23. Griso, G., Migunova, A., Orlik, J.: Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams. J. Elast. 128(2), 291–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Falconi, R., Griso, G., Orlik, J., Wackerle, S.: Asymptotic behavior for textiles with loose contact. Math. Meth. Appl. Sci. 1–46 (2023)

Download references

Author information

Authors and Affiliations

Authors

Contributions

I am the author of this article

Corresponding author

Correspondence to Georges Griso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Extension of a Rod Displacement

Appendix: Extension of a Rod Displacement

Let \(u\) be a displacement belonging to \(W^{1,p}({\mathcal{P}}_{\delta})^{3}\), \(p\in (1,\infty )\), decomposed as (2.1). The terms \({\mathcal{U}}^{\ast}\), \({\mathcal{R}}^{\ast}\) and \(\overline{U}^{\ast}\) of this decomposition satisfy (2.3).

Set

$$ \begin{aligned}[b] {\mathcal{U}}^{\ast \ast}(x_{1})&\doteq \left \{ \begin{aligned} &{\mathcal{U}}^{\ast}(x_{1})\quad &&\text{if}\;\; x_{1}\in [0,L], \\ &2{\mathcal{U}}^{\ast}(L)-{\mathcal{U}}^{\ast}(2L-x_{1})\quad &&\text{if}\;\; x_{1} \in [L,2L], \end{aligned} \right . \\ {\mathcal{R}}^{\ast \ast}(x_{1})&\doteq \left \{ \begin{aligned} &{\mathcal{R}}^{\ast}(x_{1})\quad &&\text{if}\;\; x_{1}\in [0,L], \\ &{\mathcal{R}}^{\ast}(2L-x_{1})\quad &&\text{if}\;\; x_{1}\in [L,2L], \end{aligned} \right . \\ \overline{u}^{\ast \ast}(x)&\doteq \left \{ \begin{aligned} &\overline{u}^{\ast}(x)\quad &&\text{for a.e. }\;\; x\in (0,L)\times \omega _{\delta}, \\ &\overline{u}^{\ast}(2L-x_{1},x_{2},x_{3})\quad &&\text{for a.e. }\;\; x \in (L,2L)\times \omega _{\delta}. \end{aligned} \right . \end{aligned} $$
(7.1)

Now, we define the extension of \(u\) denoted \(u^{\ast \ast}\) by

$$ u^{\ast \ast}(x)={\mathcal{U}}^{\ast \ast}(x_{1})+{\mathcal{R}}^{\ast \ast}(x_{1}) \land \big(x_{2}{\mathbf{e}}_{2}+x_{3}{\mathbf{e}}_{3}\big)+\overline{u}^{\ast \ast}(x)\quad \text{for a.e. }\; x\in (0,2L)\times \omega _{\delta}. $$

So, we have

$$ u^{\ast \ast}\in W^{1,p}((0,2L)\times \omega _{\delta})^{3},\quad { \mathcal{U}}^{\ast \ast},\;\; {\mathcal{R}}^{\ast \ast}\in W^{1,p}(0,2L),\quad \overline{u}^{\ast \ast}\in W^{1,p}((0,2L)\times \omega _{\delta})^{3}. $$

Moreover, using the estimates (2.3) we easily check that

$$ \begin{aligned}[b] &\|\overline{u}^{\ast \ast}\|_{L^{p}((0,2L)\times \omega _{\delta})} \le C\delta \|e(u)\|_{L^{p}({\mathcal{P}}_{\delta })},\quad \|\nabla \overline{u}^{\ast \ast}\|_{L^{p}((0,2L)\times \omega _{\delta})}\le C \|e(u)\|_{L^{p}({\mathcal{P}}_{\delta })}, \\ &\delta \Bigl\| {\frac{d{\mathcal{R}}^{\ast \ast}}{dx_{1}}}\Big\| _{L^{p}(0,2L)}+ \Bigl\| {\frac{d{\mathcal{U}}^{\ast \ast}}{dx_{1}}}-{\mathcal{R}}^{\ast \ast}\land { \mathbf{e}}_{1}\Big\| _{L^{p}(0,2L)}\le {\frac{C}{\delta ^{2/p}}} \|e(u)\|_{L^{p}({ \mathcal{P}}_{\delta }}. \end{aligned} $$
(7.2)

The constants do not depend on \(\delta \) and \(L\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griso, G. Decomposition of Rod Displacements via Bernoulli–Navier Displacements. Application: A Loading of the Rod with Shearing. J Elast (2023). https://doi.org/10.1007/s10659-023-10029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10659-023-10029-6

Keywords

Mathematics Subject Classification (2020)

Navigation