Semin Respir Crit Care Med 2023; 44(05): 650-660
DOI: 10.1055/s-0043-1770062
Review Article

Heart–Lung Interactions

Natsumi Hamahata
1   Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
,
Michael R. Pinsky
1   Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
› Author Affiliations

Abstract

The pulmonary and cardiovascular systems have profound effects on each other. Overall cardiac function is determined by heart rate, preload, contractility, and afterload. Changes in lung volume, intrathoracic pressure (ITP), and hypoxemia can simultaneously change all of these four hemodynamic determinants for both ventricles and can even lead to cardiovascular collapse. Intubation using sedation depresses vasomotor tone. Also, the interdependence between right and left ventricles can be affected by lung volume-induced changes in pulmonary vascular resistance and the rise in ITP. An increase in venous return due to negative ITP during spontaneous inspiration can shift the septum to the left and cause a decrease in left ventricle compliance. During positive pressure ventilation, the increase in ITP causes a decrease in venous return (preload), minimizing ventricular interdependence and will decrease left ventricle afterload augmenting cardiac output. Thus, positive pressure ventilation is beneficial in acute heart failure patients and detrimental in hypovolemic patients where it can cause a significant decrease in venous return and cardiac output. Recently, this phenomenon has been used to assess patient's volume responsiveness to fluid by measuring pulse pressure variation and stroke volume variation. Heart–lung interaction is very dynamic and changes in lung volume, ITP, and oxygen level can have various effects on the cardiovascular system depending on preexisting cardiovascular function and volume status. Heart failure and either hypo or hypervolemia predispose to greater effects of ventilation of cardiovascular function and gas exchange. This review is an overview of the basics of heart–lung interaction.



Publication History

Article published online:
04 August 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Wise RA, Robotham JL, Summer WR. Effects of spontaneous ventilation on the circulation. Lung 1981; 159 (04) 175-186
  • 2 Sette P, Dorizzi RM, Azzini AM. Vascular access: an historical perspective from Sir William Harvey to the 1956 Nobel prize to André F. Cournand, Werner Forssmann, and Dickinson W. Richards. J Vasc Access 2012; 13 (02) 137-144
  • 3 Pinsky MR. Breathing as exercise: the cardiovascular response to weaning from mechanical ventilation. Intensive Care Med 2000; 26 (09) 1164-1166
  • 4 Lemaire F, Teboul JL, Cinotti L. et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 1988; 69 (02) 171-179
  • 5 Jubran A, Mathru M, Dries D, Tobin MJ. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med 1998; 158 (06) 1763-1769
  • 6 Mohsenifar Z, Hay A, Hay J, Lewis MI, Koerner SK. Gastric intramural pH as a predictor of success or failure in weaning patients from mechanical ventilation. Ann Intern Med 1993; 119 (08) 794-798
  • 7 Hurford WE, Lynch KE, Strauss HW, Lowenstein E, Zapol WM. Myocardial perfusion as assessed by thallium-201 scintigraphy during the discontinuation of mechanical ventilation in ventilator-dependent patients. Anesthesiology 1991; 74 (06) 1007-1016
  • 8 Chatila W, Ani S, Guaglianone D, Jacob B, Amoateng-Adjepong Y, Manthous CA. Cardiac ischemia during weaning from mechanical ventilation. Chest 1996; 109 (06) 1577-1583
  • 9 Srivastava S, Chatila W, Amoateng-Adjepong Y. et al. Myocardial ischemia and weaning failure in patients with coronary artery disease: an update. Crit Care Med 1999; 27 (10) 2109-2112
  • 10 Janz DR, Casey JD, Semler MW. et al; PrePARE Investigators, Pragmatic Critical Care Research Group. Effect of a fluid bolus on cardiovascular collapse among critically ill adults undergoing tracheal intubation (PrePARE): a randomised controlled trial. Lancet Respir Med 2019; 7 (12) 1039-1047
  • 11 Larsen PD, Tzeng YC, Sin PYW, Galletly DC. Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respir Physiol Neurobiol 2010; 174 (1-2): 111-118
  • 12 Bernardi L, Calciati A, Gratarola A, Battistin I, Fratino P, Finardi G. Heart rate-respiration relationship: computerized method for early assessment of cardiac autonomic damage in diabetic patients. Acta Cardiol 1986; 41 (03) 197-206
  • 13 Yasuma F, Hayano J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm?. Chest 2004; 125 (02) 683-690
  • 14 Shepherd JT. The lungs as receptor sites for cardiovascular regulation. Circulation 1981; 63 (01) 1-10
  • 15 Glick G, Wechsler AS, Epstein SE. Reflex cardiovascular depression produced by stimulation of pulmonary stretch receptors in the dog. J Clin Invest 1969; 48 (03) 467-473
  • 16 Vatner SF, Rutherford JD. Control of the myocardial contractile state by carotid chemo- and baroreceptor and pulmonary inflation reflexes in conscious dogs. J Clin Invest 1978; 61 (06) 1593-1601
  • 17 Persson MG, Lönnqvist PA, Gustafsson LE. Positive end-expiratory pressure ventilation elicits increases in endogenously formed nitric oxide as detected in air exhaled by rabbits. Anesthesiology 1995; 82 (04) 969-974
  • 18 Berend N, Christopher KL, Voelkel NF. The effect of positive end-expiratory pressure on functional residual capacity: role of prostaglandin production. Am Rev Respir Dis 1982; 126 (04) 646-647
  • 19 Jelic S, Padeletti M, Kawut SM. et al. Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation 2008; 117 (17) 2270-2278
  • 20 Berglund JE, Haldén E, Jakobson S, Svensson J. PEEP ventilation does not cause humorally mediated cardiac output depression in pigs. Intensive Care Med 1994; 20 (05) 360-364
  • 21 Frass M, Watschinger B, Traindl O. et al. Atrial natriuretic peptide release in response to different positive end-expiratory pressure levels. Crit Care Med 1993; 21 (03) 343-347
  • 22 Payen DM, Brun-Buisson CJ, Carli PA. et al. Hemodynamic, gas exchange, and hormonal consequences of LBPP during PEEP ventilation. J Appl Physiol 1987; 62 (01) 61-70
  • 23 Farge D, De la Coussaye JE, Beloucif S, Fratacci MD, Payen DM. Interactions between hemodynamic and hormonal modifications during PEEP-induced antidiuresis and antinatriuresis. Chest 1995; 107 (04) 1095-1100
  • 24 Zhang X-B, Yuan Y-T, Du Y-P, Jiang X-T, Zeng H-Q. Efficacy of positive airway pressure on brain natriuretic peptide in patients with heart failure and sleep-disorder breathing: a meta-analysis of randomized controlled trials. Lung 2015; 193 (02) 255-260
  • 25 Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013; 369 (22) 2126-2136
  • 26 Dawson CA, Grimm DJ, Linehan JH. Lung inflation and longitudinal distribution of pulmonary vascular resistance during hypoxia. J Appl Physiol 1979; 47 (03) 532-536
  • 27 Hakim TS, Michel RP, Minami H, Chang HK. Site of pulmonary hypoxic vasoconstriction studied with arterial and venous occlusion. J Appl Physiol 1983; 54 (05) 1298-1302
  • 28 Marini JJ, Culver BH, Butler J. Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis 1981; 124 (04) 382-386
  • 29 Butler J. The heart is in good hands. Circulation 1983; 67 (06) 1163-1168
  • 30 Madden JA, Dawson CA, Harder DR. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol 1985; 59 (01) 113-118
  • 31 Dunham-Snary KJ, Wu D, Sykes EA. et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest 2017; 151 (01) 181-192
  • 32 Marshall BE, Marshall C, Benumof J, Saidman LJ. Hypoxic pulmonary vasoconstriction in dogs: effects of lung segment size and oxygen tension. J Appl Physiol 1981; 51 (06) 1543-1551
  • 33 Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT. Hypoxic pulmonary vasoconstriction. Physiol Rev 2012; 92 (01) 367-520
  • 34 Hughes JMB. Hypoxic pulmonary vasoconstriction: clinical implications. Eur Respir J 2016; 47 (01) 31-34
  • 35 Hakim TS, Michel RP, Chang HK. Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. J Appl Physiol 1982; 53 (05) 1110-1115
  • 36 Brower RG, Gottlieb J, Wise RA, Permutt S, Sylvester JT. Locus of hypoxic vasoconstriction in isolated ferret lungs. J Appl Physiol 1987; 63 (01) 58-65
  • 37 Howell JBL, Permutt S, Proctor DF, Riley RL. Effect of inflation of the lung on different parts of pulmonary vascular bed. J Appl Physiol 1961; 16: 71-76
  • 38 Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 1975; 292 (06) 284-289
  • 39 West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 1964; 19: 713-724
  • 40 Slobod D, Assanangkornchai N, Alhazza M, Mettasittigorn P, Magder S. Right ventricular loading by lung inflation during controlled mechanical ventilation. Am J Respir Crit Care Med 2022; 205 (11) 1311-1319
  • 41 Lewis GD, Bossone E, Naeije R. et al. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 2013; 128 (13) 1470-1479
  • 42 MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part One. Am J Respir Crit Care Med 1994; 150 (03) 833-852
  • 43 Taylor RR, Covell JW, Sonnenblick EH, Ross Jr J. Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol 1967; 213 (03) 711-718
  • 44 Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol 1984; 56 (03) 765-771
  • 45 Goldberg HS, Rabson J. Control of cardiac output by systemic vessels. Circulatory adjustments to acute and chronic respiratory failure and the effect of therapeutic interventions. Am J Cardiol 1981; 47 (03) 696-702
  • 46 Pinsky MR, Matuschak GM, Klain M. Determinants of cardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol 1985; 58 (04) 1189-1198
  • 47 Buda AJ, Pinsky MR, Ingels Jr NB, Daughters II GT, Stinson EB, Alderman EL. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 1979; 301 (09) 453-459
  • 48 Fletcher EC, Proctor M, Yu J. et al. Pulmonary edema develops after recurrent obstructive apneas. Am J Respir Crit Care Med 1999; 160 (5 Pt 1): 1688-1696
  • 49 Lurie KG, Zielinski T, McKnite S, Aufderheide T, Voelckel W. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation 2002; 105 (01) 124-129
  • 50 Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol 1990; 69 (06) 1961-1972
  • 51 Takata M, Robotham JL. Effects of inspiratory diaphragmatic descent on inferior vena caval venous return. J Appl Physiol 1992; 72 (02) 597-607
  • 52 De Hoyos A, Liu PP, Benard DC, Bradley TD. Haemodynamic effects of continuous positive airway pressure in humans with normal and impaired left ventricular function. Clin Sci (Lond) 1995; 88 (02) 173-178
  • 53 Bradley TD, Holloway RM, McLaughlin PR, Ross BL, Walters J, Liu PP. Cardiac output response to continuous positive airway pressure in congestive heart failure. Am Rev Respir Dis 1992; 145 (2 Pt 1): 377-382
  • 54 Nielsen J, Østergaard M, Kjaergaard J. et al. Lung recruitment maneuver depresses central hemodynamics in patients following cardiac surgery. Intensive Care Med 2005; 31 (09) 1189-1194
  • 55 Russotto V, Myatra SN, Laffey JG. et al; INTUBE Study Investigators. Intubation practices and adverse peri-intubation events in critically ill patients from 29 countries. JAMA 2021; 325 (12) 1164-1172
  • 56 Russell DW, Casey JD, Gibbs KW. et al; PREPARE II Investigators and the Pragmatic Critical Care Research Group. Effect of Fluid Bolus Administration On Cardiovascular Collapse Among Critically Ill Patients Undergoing Tracheal Intubation: A Randomized Clinical Trial. JAMA 2022; 328 (03) 270-279
  • 57 Lessard MR, Guérot E, Lorino H, Lemaire F, Brochard L. Effects of pressure-controlled with different I:E ratios versus volume-controlled ventilation on respiratory mechanics, gas exchange, and hemodynamics in patients with adult respiratory distress syndrome. Anesthesiology 1994; 80 (05) 983-991
  • 58 Mang H, Kacmarek RM, Ritz R, Wilson RS, Kimball WP. Cardiorespiratory effects of volume- and pressure-controlled ventilation at various I/E ratios in an acute lung injury model. Am J Respir Crit Care Med 1995; 151 (3 Pt 1): 731-736
  • 59 Chan K, Abraham E. Effects of inverse ratio ventilation on cardiorespiratory parameters in severe respiratory failure. Chest 1992; 102 (05) 1556-1561
  • 60 Teboul J-L, Monnet X, Chemla D, Michard F. Arterial pulse pressure variation with mechanical ventilation. Am J Respir Crit Care Med 2019; 199 (01) 22-31
  • 61 Michard F, Boussat S, Chemla D. et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 2000; 162 (01) 134-138
  • 62 Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med 2017; 45 (03) 415-421
  • 63 Hedenstierna G, Santesson J. Breathing mechanics, dead space and gas exchange in the extremely obese, breathing spontaneously and during anaesthesia with intermittent positive pressure ventilation. Acta Anaesthesiol Scand 1976; 20 (03) 248-254
  • 64 Jones RL, Nzekwu M-MU. The effects of body mass index on lung volumes. Chest 2006; 130 (03) 827-833
  • 65 Pirrone M, Fisher D, Chipman D. et al. Recruitment maneuvers and positive end-expiratory pressure titration in morbidly obese ICU patients. Crit Care Med 2016; 44 (02) 300-307
  • 66 De Jong A, Cossic J, Verzilli D. et al. Impact of the driving pressure on mortality in obese and non-obese ARDS patients: a retrospective study of 362 cases. Intensive Care Med 2018; 44 (07) 1106-1114
  • 67 Fumagalli J, Berra L, Zhang C. et al. Transpulmonary pressure describes lung morphology during decremental positive end-expiratory pressure trials in obesity. Crit Care Med 2017; 45 (08) 1374-1381
  • 68 Liou J, Doherty D, Gillin T. et al. Retrospective review of transpulmonary pressure guided positive end-expiratory pressure titration for mechanical ventilation in Class II and III Obesity. Crit Care Explor 2022; 4 (05) e0690
  • 69 Florio G, Ferrari M, Bittner EA. et al; investigators of the lung rescue team. A lung rescue team improves survival in obesity with acute respiratory distress syndrome. Crit Care 2020; 24 (01) 4
  • 70 Beitler JR, Sarge T, Banner-Goodspeed VM. et al; EPVent-2 Study Group. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-Fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2019; 321 (09) 846-857
  • 71 Talmor D, Sarge T, Malhotra A. et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359 (20) 2095-2104
  • 72 Sarge T, Baedorf-Kassis E, Banner-Goodspeed V. et al; EPVent-2 Study Group. Effect of esophageal pressure-guided positive end-expiratory pressure on survival from acute respiratory distress syndrome: a risk-based and mechanistic reanalysis of the EPVent-2 Trial. Am J Respir Crit Care Med 2021; 204 (10) 1153-1163
  • 73 Umbrello M, Fumagalli J, Pesenti A, Chiumello D. Pathophysiology and management of acute respiratory distress syndrome in obese patients. Semin Respir Crit Care Med 2019; 40 (01) 40-56
  • 74 Cheyne WS, Williams AM, Harper MI, Eves ND. Heart-lung interaction in a model of COPD: importance of lung volume and direct ventricular interaction. Am J Physiol Heart Circ Physiol 2016; 311 (06) H1367-H1374
  • 75 Chaouat A, Naeije R, Weitzenblum E. Pulmonary hypertension in COPD. Eur Respir J 2008; 32 (05) 1371-1385
  • 76 Price LC, McAuley DF, Marino PS, Finney SJ, Griffiths MJ, Wort SJ. Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 302 (09) L803-L815
  • 77 Sipmann FS, Santos A, Tusman G. Heart-lung interactions in acute respiratory distress syndrome: pathophysiology, detection and management strategies. Ann Transl Med 2018; 6 (02) 27
  • 78 Amato MBP, Meade MO, Slutsky AS. et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372 (08) 747-755
  • 79 Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes?. Am J Respir Crit Care Med 1998; 158 (01) 3-11
  • 80 Boissier F, Katsahian S, Razazi K. et al. Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Intensive Care Med 2013; 39 (10) 1725-1733
  • 81 Vieillard-Baron A, Matthay M, Teboul JL. et al. Experts' opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med 2016; 42 (05) 739-749