Semin Respir Crit Care Med 2023; 44(05): 594-611
DOI: 10.1055/s-0043-1770061
Review Article

Tissue Perfusion and Diffusion and Cellular Respiration: Transport and Utilization of Oxygen

Connie C. W. Hsia
1   Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
› Author Affiliations
Funding This study was supported by the National Heart, Lung and Blood Institute grant (grant number: R01 HL157533).

Abstract

This article provides an overview of the journey of inspired oxygen after its uptake across the alveolar–capillary interface, and the interplay among tissue perfusion, diffusion, and cellular respiration in the transport and utilization of oxygen. The critical interactions between oxygen and its facilitative carriers (hemoglobin in red blood cells and myoglobin in muscle cells), and with other respiratory and vasoactive molecules (carbon dioxide, nitric oxide, and carbon monoxide), are emphasized to illustrate how this versatile system dynamically optimizes regional convective transport and diffusive gas exchange. The rates of reciprocal gas exchange in the lung and the periphery must be well-matched and sufficient for meeting the range of energy demands from rest to maximal stress but not excessive as to become toxic. The mobile red blood cells play a vital role in matching tissue perfusion and gas exchange by dynamically regulating the controlled uptake of oxygen and communicating regional metabolic signals across different organs. Intracellular oxygen diffusion and facilitation via myoglobin into the mitochondria, and utilization via electron transport chain and oxidative phosphorylation, are summarized. Physiological and pathophysiological adaptations are briefly described. Dysfunction of any component across this integrated system affects all other components and elicits corresponding structural and functional adaptation aimed at matching the capacities across the entire system and restoring equilibrium under normal and pathological conditions.



Publication History

Article published online:
04 August 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Vincent JL. Understanding cardiac output. Crit Care 2008; 12 (04) 174
  • 2 Magder S, Famulari G, Gariepy B. Periodicity, time constants of drainage, and the mechanical determinants of peak cardiac output during exercise. J Appl Physiol 2019; 127 (06) 1611-1619
  • 3 LaCombe P, Tariq MA, Lappin SL. Physiology, Afterload Reduction. StatPearls. Treasure Island, FL: StatPearls Publishing; 2023
  • 4 Sato K, Sogawa M, Namura O, Hayashi J. Deterioration of body oxygen metabolism by vasodilator and/or vasoconstrictor administration during cardiopulmonary bypass. ASAIO J 2006; 52 (01) 96-99
  • 5 Grote J. Tissue respiration. In: Schmidt RF, Thews G. eds. Human Physiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 1989: 598-612
  • 6 Björnberg J, Grände PO, Maspers M, Mellander S. Site of autoregulatory reactions in the vascular bed of cat skeletal muscle as determined with a new technique for segmental vascular resistance recordings. Acta Physiol Scand 1988; 133 (02) 199-210
  • 7 Hall ET, Sá RC, Holverda S. et al. The effect of supine exercise on the distribution of regional pulmonary blood flow measured using proton MRI. J Appl Physiol 2014; 116 (04) 451-461
  • 8 Russell McEvoy GM, Wells BN, Kiley ME, Kaur KK, Fraser GM. Dynamics of capillary blood flow responses to acute local changes in oxygen and carbon dioxide concentrations. Front Physiol 2022; 13: 1052449
  • 9 Korte N, Ilkan Z, Pearson CL. et al. The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia. J Clin Invest 2022; 132 (09) e154118
  • 10 Hirunpattarasilp C, Barkaway A, Davis H, Pfeiffer T, Sethi H, Attwell D. Hyperoxia evokes pericyte-mediated capillary constriction. J Cereb Blood Flow Metab 2022; 42 (11) 2032-2047
  • 11 Tsai AG, Acero C, Nance PR. et al. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol 2005; 288 (04) H1730-H1739
  • 12 Cabrales P, Tsai AG, Intaglietta M. Microvascular pressure and functional capillary density in extreme hemodilution with low- and high-viscosity dextran and a low-viscosity Hb-based O2 carrier. Am J Physiol Heart Circ Physiol 2004; 287 (01) H363-H373
  • 13 Cabrales P, Tsai AG, Intaglietta M. Balance between vasoconstriction and enhanced oxygen delivery. Transfusion 2008; 48 (10) 2087-2095
  • 14 Baker M, Anjum F, dela Cruz J. Deep Venous Thrombosis Ultrasound Evaluation. StatPearls. Treasure Island, FL: StatPearls Publishing; 2023
  • 15 de Graaff JC, Ubbink DT, Büller HR, Jacobs MJ. The diagnosis of deep venous thrombosis using laser Doppler skin perfusion measurements. Microvasc Res 2001; 61 (01) 49-55
  • 16 Jung F, Leithäuser B, Landgraf H. et al. Laser Doppler flux measurement for the assessment of cutaneous microcirculatio–critical remarks. Clin Hemorheol Microcirc 2013; 55 (04) 411-416
  • 17 Bajwa A, Wesolowski R, Patel A. et al. Assessment of tissue perfusion in the lower limb: current methods and techniques under development. Circ Cardiovasc Imaging 2014; 7 (05) 836-843
  • 18 Hsia CCW, Bates JHT, Driehuys B. et al. Quantitative imaging metrics for the assessment of pulmonary pathophysiology: an official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20 (02) 161-195
  • 19 Muir ER, Watts LT, Tiwari YV, Bresnen A, Shen Q, Duong TQ. Quantitative cerebral blood flow measurements using MRI. In: Milner R. ed. Cerebral Angiogenesis: Methods and Protocols. New York, NY: Springer New York; 2014: 205-211
  • 20 Duscha BD, Kraus WE, Keteyian SJ. et al. Capillary density of skeletal muscle: a contributing mechanism for exercise intolerance in class II-III chronic heart failure independent of other peripheral alterations. J Am Coll Cardiol 1999; 33 (07) 1956-1963
  • 21 McGuire BJ, Secomb TW. Estimation of capillary density in human skeletal muscle based on maximal oxygen consumption rates. Am J Physiol Heart Circ Physiol 2003; 285 (06) H2382-H2391
  • 22 Gillespie J, Hansen M, Samatham R, Baker SD, Filer S, Sheridan DC. Capillary refill technology to enhance the accuracy of peripheral perfusion evaluation in sepsis. J Intensive Care Med 2022; 37 (09) 1159-1164
  • 23 Virgini-Magalhães CE, Porto CL, Fernandes FF, Dorigo DM, Bottino DA, Bouskela E. Use of microcirculatory parameters to evaluate chronic venous insufficiency. J Vasc Surg 2006; 43 (05) 1037-1044
  • 24 Nacul FE, Guia IL, Lessa MA, Tibiriçá E. The effects of vasoactive drugs on intestinal functional capillary density in endotoxemic rats: intravital video-microscopy analysis. Anesth Analg 2010; 110 (02) 547-554
  • 25 Langer S, Biberthaler P, Harris AG, Steinau HU, Messmer K. In vivo monitoring of microvessels in skin flaps: introduction of a novel technique. Microsurgery 2001; 21 (07) 317-324
  • 26 Wadowski PP, Steinlechner B, Zimpfer D. et al. Functional capillary impairment in patients with ventricular assist devices. Sci Rep 2019; 9 (01) 5909
  • 27 Silva PS, Marcus DM, Liu D. et al; DRCR Retina Network. Association of ultra-widefield fluorescein angiography-identified retinal nonperfusion and the risk of diabetic retinopathy worsening over time. JAMA Ophthalmol 2022; 140 (10) 936-945
  • 28 Michael Peters A. The precise physiological definition of tissue perfusion and clearance measured from imaging. Eur J Nucl Med Mol Imaging 2018; 45 (07) 1139-1141
  • 29 Wagner PD, Laravuso RB, Uhl RR, West JB. Continuous distributions of ventilation-perfusion ratios in normal subjects breathing air and 100 per cent O2. J Clin Invest 1974; 54 (01) 54-68
  • 30 Petersson J, Glenny RW. Gas exchange and ventilation-perfusion relationships in the lung. Eur Respir J 2014; 44 (04) 1023-1041
  • 31 Harms CA, Babcock MA, McClaran SR. et al. Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 1997; 82 (05) 1573-1583
  • 32 Olson TP, Joyner MJ, Dietz NM, Eisenach JH, Curry TB, Johnson BD. Effects of respiratory muscle work on blood flow distribution during exercise in heart failure. J Physiol 2010; 588 (Pt 13): 2487-2501
  • 33 Hsia CC. Respiratory function of hemoglobin. N Engl J Med 1998; 338 (04) 239-247
  • 34 Hsia CCW. Respiratory function of hemoglobin: from origin to human physiology and pathophysiology. In: Magder S, Malhotra A, Hibbert KA, Hardin CC. eds. Cardiopulmonary Monitoring: Basic Physiology, Tools, and Bedside Management for the Critically Ill. Cham: Springer International Publishing; 2021: 635-651
  • 35 Premont RT, Reynolds JD, Zhang R, Stamler JS. Role of nitric oxide carried by hemoglobin in cardiovascular physiology: developments on a three-gas respiratory cycle. Circ Res 2020; 126 (01) 129-158
  • 36 Perutz MF. Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Annu Rev Physiol 1990; 52: 1-25
  • 37 Cabrales P, Tsai AG, Intaglietta M. Isovolemic exchange transfusion with increasing concentrations of low oxygen affinity hemoglobin solution limits oxygen delivery due to vasoconstriction. Am J Physiol Heart Circ Physiol 2008; 295 (05) H2212-H2218
  • 38 Betticher DC, Reinhart WH, Geiser J. Effect of RBC shape and deformability on pulmonary O2 diffusing capacity and resistance to flow in rabbit lungs. J Appl Physiol 1995; 78 (03) 778-783
  • 39 Snyder GK, Sheafor BA. Red blood cells: centerpiece in the evolution of the vertebrate circulatory system. Am Zool 1999; 39: 189-198
  • 40 Lee JC, Gimm JA, Lo AJ. et al. Mechanism of protein sorting during erythroblast enucleation: role of cytoskeletal connectivity. Blood 2004; 103 (05) 1912-1919
  • 41 Gifford SC, Derganc J, Shevkoplyas SS, Yoshida T, Bitensky MW. A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence. Br J Haematol 2006; 135 (03) 395-404
  • 42 Kay M. Immunoregulation of cellular life span. Ann N Y Acad Sci 2005; 1057: 85-111
  • 43 Adams KH. A theory for the shape of the red blood cell. Biophys J 1973; 13 (10) 1049-1053
  • 44 Uzoigwe C. The human erythrocyte has developed the biconcave disc shape to optimise the flow properties of the blood in the large vessels. Med Hypotheses 2006; 67 (05) 1159-1163
  • 45 Leterrier C, Pullarkat PA. Mechanical role of the submembrane spectrin scaffold in red blood cells and neurons. J Cell Sci 2022; 135 (16) jcs259356
  • 46 Mohandas N, Chasis JA. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 1993; 30 (03) 171-192
  • 47 An X, Lecomte MC, Chasis JA, Mohandas N, Gratzer W. Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane. J Biol Chem 2002; 277 (35) 31796-31800
  • 48 Hsia CC, Chuong CJ, Johnson Jr RL. Red cell distortion and conceptual basis of diffusing capacity estimates: finite element analysis. J Appl Physiol 1997; 83 (04) 1397-1404
  • 49 Geiser J, Betticher DC. Gas transfer in isolated lungs perfused with red cell suspension or hemoglobin solution. Respir Physiol 1989; 77 (01) 31-39
  • 50 Hogg JC, McLean T, Martin BA, Wiggs B. Erythrocyte transit and neutrophil concentration in the dog lung. J Appl Physiol 1988; 65 (03) 1217-1225
  • 51 Hsia CC, Johnson Jr RL, Shah D. Red cell distribution and the recruitment of pulmonary diffusing capacity. J Appl Physiol 1999; 86 (05) 1460-1467
  • 52 Fan N, Lavu S, Hanson CA, Tefferi A. Extramedullary hematopoiesis in the absence of myeloproliferative neoplasm: Mayo Clinic case series of 309 patients. Blood Cancer J 2018; 8 (12) 119
  • 53 Hsia CC, Johnson Jr RL, Dane DM. et al. The canine spleen in oxygen transport: gas exchange and hemodynamic responses to splenectomy. J Appl Physiol 2007; 103 (05) 1496-1505
  • 54 Cabanac A, Folkow LP, Blix AS. Volume capacity and contraction control of the seal spleen. J Appl Physiol 1997; 82 (06) 1989-1994
  • 55 Dane DM, Hsia CC, Wu EY. et al. Splenectomy impairs diffusive oxygen transport in the lung of dogs. J Appl Physiol 2006; 101 (01) 289-297
  • 56 Ilardo MA, Moltke I, Korneliussen TS. et al. Physiological and genetic adaptations to diving in sea nomads. Cell 2018; 173 (03) 569.e15-580.e15
  • 57 Schagatay E, Richardson MX, Lodin-Sundström A. Size matters: spleen and lung volumes predict performance in human apneic divers. Front Physiol 2012; 3: 173
  • 58 Podoltsev NA, Zhu M, Zeidan AM. et al. The impact of phlebotomy and hydroxyurea on survival and risk of thrombosis among older patients with polycythemia vera. Blood Adv 2018; 2 (20) 2681-2690
  • 59 Cacic DL, Hervig T, Seghatchian J. Blood doping: the flip side of transfusion and transfusion alternatives. Transfus Apheresis Sci 2013; 49 (01) 90-94
  • 60 Strand K, Knapp JE, Bhyravbhatla B, Royer Jr WE. Crystal structure of the hemoglobin dodecamer from Lumbricus erythrocruorin: allosteric core of giant annelid respiratory complexes. J Mol Biol 2004; 344 (01) 119-134
  • 61 Hsia CC, Hyde DM, Weibel ER. Lung structure and the intrinsic challenges of gas exchange. Compr Physiol 2016; 6 (02) 827-895
  • 62 Sterner R, Decker H. Inversion of the Bohr effect upon oxygen binding to 24-meric tarantula hemocyanin. Proc Natl Acad Sci U S A 1994; 91 (11) 4835-4839
  • 63 McMurtrie HL, Cleary HJ, Alvarez BV. et al. The bicarbonate transport metabolon. J Enzyme Inhib Med Chem 2004; 19 (03) 231-236
  • 64 Pedersen SF, Cala PM. Comparative biology of the ubiquitous Na+/H+ exchanger, NHE1: lessons from erythrocytes. J Exp Zoolog A Comp Exp Biol 2004; 301 (07) 569-578
  • 65 Matteucci E, Giampietro O. Electron pathways through erythrocyte plasma membrane in human physiology and pathology: potential redox biomarker?. Biomark Insights 2007; 2: 321-329
  • 66 Wang KW, Deen WM. Chemical kinetic and diffusional limitations on bicarbonate reabsorption by the proximal tubule. Biophys J 1980; 31 (02) 161-182
  • 67 Aminov D, Pines D, Kiefer PM, Daschakraborty S, Hynes JT, Pines E. Intact carbonic acid is a viable protonating agent for biological bases. Proc Natl Acad Sci U S A 2019; 116 (42) 20837-20843
  • 68 Endeward V, Musa-Aziz R, Cooper GJ. et al. Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 2006; 20 (12) 1974-1981
  • 69 Endeward V, Cartron JP, Ripoche P, Gros G. RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J 2008; 22 (01) 64-73
  • 70 Herrera M, Hong NJ, Garvin JL. Aquaporin-1 transports NO across cell membranes. Hypertension 2006; 48 (01) 157-164
  • 71 Michenkova M, Taki S, Blosser MC. et al. Carbon dioxide transport across membranes. Interface Focus 2021; 11 (02) 20200090
  • 72 Mairbäurl H, Weber RE. Oxygen transport by hemoglobin. Compr Physiol 2012; 2 (02) 1463-1489
  • 73 Kim KH, Chang TH, Kim SH, Kang SH, Kim JS. Changes of P50 during hypothermia for cardiopulmonary bypass surgery. Korean J Anesthesiol 1991; 24 (05) 1006-1012
  • 74 Wainwright MS, Sheng H, Sato Y. et al. Pharmacological correction of hypothermic P(50) shift does not alter outcome from focal cerebral ischemia in rats. Am J Physiol Heart Circ Physiol 2002; 282 (05) H1863-H1870
  • 75 Bellingham AJ, Detter JC, Lenfant C. Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J Clin Invest 1971; 50 (03) 700-706
  • 76 Duhm J. Dual effect of 2,3-diphosphoglycerate on the Bohr effects of human blood. Pflugers Arch 1976; 363 (01) 55-60
  • 77 Mairbäurl H, Schobersberger W, Oelz O, Bärtsch P, Eckardt KU, Bauer C. Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2,3-diphosphoglycerate. J Appl Physiol 1990; 68 (03) 1186-1194
  • 78 Li C, Li X, Liu J. et al. Investigation of the differences between the Tibetan and Han populations in the hemoglobin-oxygen affinity of red blood cells and in the adaptation to high-altitude environments. Hematology 2018; 23 (05) 309-313
  • 79 Bencowitz HZ, Wagner PD, West JB. Effect of change in P50 on exercise tolerance at high altitude: a theoretical study. J Appl Physiol 1982; 53 (06) 1487-1495
  • 80 Tashi T, Scott Reading N, Wuren T. et al. Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders. J Mol Med (Berl) 2017; 95 (06) 665-670
  • 81 Natarajan C, Jendroszek A, Kumar A. et al. Molecular basis of hemoglobin adaptation in the high-flying bar-headed goose. PLoS Genet 2018; 14 (04) e1007331
  • 82 Dominelli PB, Wiggins CC, Baker SE. et al. Influence of high affinity haemoglobin on the response to normoxic and hypoxic exercise. J Physiol 2020; 598 (08) 1475-1490
  • 83 Webb KL, Dominelli PB, Baker SE. et al. Influence of high hemoglobin-oxygen affinity on humans during hypoxia. Front Physiol 2022; 12: 763933
  • 84 Simonson TS, Wei G, Wagner HE. et al. Increased blood-oxygen binding affinity in Tibetan and Han Chinese residents at 4200 m. Exp Physiol 2014; 99 (12) 1624-1635
  • 85 Wearing OH, Ivy CM, Gutiérrez-Pinto N. et al. The adaptive benefit of evolved increases in hemoglobin-O2 affinity is contingent on tissue O2 diffusing capacity in high-altitude deer mice. BMC Biol 2021; 19 (01) 128
  • 86 Simonson TS, Wei G, Wagner HE. et al. Low haemoglobin concentration in Tibetan males is associated with greater high-altitude exercise capacity. J Physiol 2015; 593 (14) 3207-3218
  • 87 Droma T, McCullough RG, McCullough RE. et al. Increased vital and total lung capacities in Tibetan compared to Han residents of Lhasa (3,658 m). Am J Phys Anthropol 1991; 86 (03) 341-351
  • 88 Faoro V, Huez S, Vanderpool R. et al. Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude. J Appl Physiol 2014; 116 (07) 919-926
  • 89 Zhuang J, Droma T, Sutton JR. et al. Smaller alveolar-arterial O2 gradients in Tibetan than Han residents of Lhasa (3658 m). Respir Physiol 1996; 103 (01) 75-82
  • 90 Hu H, Petousi N, Glusman G. et al. Evolutionary history of Tibetans inferred from whole-genome sequencing. PLoS Genet 2017; 13 (04) e1006675
  • 91 Ge RL, Simonson TS, Gordeuk V, Prchal JT, McClain DA. Metabolic aspects of high-altitude adaptation in Tibetans. Exp Physiol 2015; 100 (11) 1247-1255
  • 92 Simonson TS, Huff CD, Witherspoon DJ, Prchal JT, Jorde LB. Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans. Exp Physiol 2015; 100 (11) 1263-1268
  • 93 Mack AK, Kato GJ. Sickle cell disease and nitric oxide: a paradigm shift?. Int J Biochem Cell Biol 2006; 38 (08) 1237-1243
  • 94 Stepuro TL, Zinchuk VV. Nitric oxide effect on the hemoglobin-oxygen affinity. J Physiol Pharmacol 2006; 57 (01) 29-38
  • 95 Kleinbongard P, Schulz R, Rassaf T. et al. Red blood cells express a functional endothelial nitric oxide synthase. Blood 2006; 107 (07) 2943-2951
  • 96 Fens MH, Larkin SK, Oronsky B, Scicinski J, Morris CR, Kuypers FA. The capacity of red blood cells to reduce nitrite determines nitric oxide generation under hypoxic conditions. PLoS One 2014; 9 (07) e101626
  • 97 Huang Z, Shiva S, Kim-Shapiro DB. et al. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J Clin Invest 2005; 115 (08) 2099-2107
  • 98 Stamler JS, Jia L, Eu JP. et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 1997; 276 (5321): 2034-2037
  • 99 Gladwin MT, Ognibene FP, Pannell LK. et al. Relative role of heme nitrosylation and beta-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc Natl Acad Sci U S A 2000; 97 (18) 9943-9948
  • 100 Shiva S, Huang Z, Grubina R. et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 2007; 100 (05) 654-661
  • 101 Reeder BJ, Ukeri J. Strong modulation of nitrite reductase activity of cytoglobin by disulfide bond oxidation: implications for nitric oxide homeostasis. Nitric Oxide 2018; 72: 16-23
  • 102 Tiso M, Tejero J, Basu S. et al. Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 2011; 286 (20) 18277-18289
  • 103 Gladwin MT, Shelhamer JH, Schechter AN. et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci U S A 2000; 97 (21) 11482-11487
  • 104 Chamchoi A, Srihirun S, Paiboonsukwong K. et al. Decreased nitrite reductase activity of deoxyhemoglobin correlates with platelet activation in hemoglobin E/ß-thalassemia subjects. PLoS One 2018; 13 (09) e0203955
  • 105 Gow AJ, Stamler JS. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 1998; 391 (6663): 169-173
  • 106 McMahon TJ, Moon RE, Luschinger BP. et al. Nitric oxide in the human respiratory cycle. Nat Med 2002; 8 (07) 711-717
  • 107 Bailey DM, Rasmussen P, Overgaard M. et al. Nitrite and S-nitrosohemoglobin exchange across the human cerebral and femoral circulation: relationship to basal and exercise blood flow responses to hypoxia. Circulation 2017; 135 (02) 166-176
  • 108 Sun CW, Yang J, Kleschyov AL. et al. Hemoglobin β93 cysteine is not required for export of nitric oxide bioactivity from the red blood cell. Circulation 2019; 139 (23) 2654-2663
  • 109 Schmidt HHHW, Feelisch M. Red blood cell-derived nitric oxide bioactivity and hypoxic vasodilation. Circulation 2019; 139 (23) 2664-2667
  • 110 Gaston B, May WJ, Sullivan S. et al. Essential role of hemoglobin beta-93-cysteine in posthypoxia facilitation of breathing in conscious mice. J Appl Physiol 2014; 116 (10) 1290-1299
  • 111 Motterlini R, Foresti R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol Cell Physiol 2017; 312 (03) C302-C313
  • 112 Minetti M, Agati L, Malorni W. The microenvironment can shift erythrocytes from a friendly to a harmful behavior: pathogenetic implications for vascular diseases. Cardiovasc Res 2007; 75 (01) 21-28
  • 113 Nagababu E, Chrest FJ, Rifkind JM. Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase. Biochim Biophys Acta 2003; 1620 (1–3): 211-217
  • 114 Gow AJ, Luchsinger BP, Pawloski JR, Singel DJ, Stamler JS. The oxyhemoglobin reaction of nitric oxide. Proc Natl Acad Sci U S A 1999; 96 (16) 9027-9032
  • 115 Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function?. Redox Biol 2014; 2: 251-258
  • 116 Lücker A, Secomb TW, Barrett MJP, Weber B, Jenny P. The relation between capillary transit times and hemoglobin saturation heterogeneity. part 2: capillary networks. Front Physiol 2018; 9: 1296
  • 117 Gavin TP, Kraus RM, Carrithers JA, Garry JP, Hickner RC. Aging and the skeletal muscle angiogenic response to exercise in women. J Gerontol A Biol Sci Med Sci 2015; 70 (10) 1189-1197
  • 118 Jensen L, Bangsbo J, Hellsten Y. Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol 2004; 557 (Pt 2): 571-582
  • 119 Hawkins S, Wiswell R. Rate and mechanism of maximal oxygen consumption decline with aging: implications for exercise training. Sports Med 2003; 33 (12) 877-888
  • 120 Popel AS. Theory of oxygen transport to tissue. Crit Rev Biomed Eng 1989; 17 (03) 257-321
  • 121 Montero D, Diaz-Canestro C. Skeletal Muscle O(2) Diffusion and the Limitation of Aerobic Capacity in Heart Failure: A Clarification. Front Cardiovasc Med 2019; 6: 78
  • 122 Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest 1995; 96 (04) 1916-1926
  • 123 Wyman J. Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J Biol Chem 1966; 241 (01) 115-121
  • 124 Gros G, Wittenberg BA, Jue T. Myoglobin's old and new clothes: from molecular structure to function in living cells. J Exp Biol 2010; 213 (Pt 16): 2713-2725
  • 125 Hendgen-Cotta UB, Merx MW, Shiva S. et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2008; 105 (29) 10256-10261
  • 126 Kamga C, Krishnamurthy S, Shiva S. Myoglobin and mitochondria: a relationship bound by oxygen and nitric oxide. Nitric Oxide 2012; 26 (04) 251-258
  • 127 Totzeck M, Hendgen-Cotta UB, Luedike P. et al. Nitrite regulates hypoxic vasodilation via myoglobin-dependent nitric oxide generation. Circulation 2012; 126 (03) 325-334
  • 128 Christen L, Broghammer H, Rapöhn I. et al. Myoglobin-mediated lipid shuttling increases adrenergic activation of brown and white adipocyte metabolism and is as a marker of thermogenic adipocytes in humans. Clin Transl Med 2022; 12 (12) e1108
  • 129 Totzeck M, Hendgen-Cotta UB, Kelm M, Rassaf T. Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia. PLoS One 2014; 9 (08) e105951
  • 130 Garry DJ, Ordway GA, Lorenz JN. et al. Mice without myoglobin. Nature 1998; 395 (6705): 905-908
  • 131 Merx MW, Gödecke A, Flögel U, Schrader J. Oxygen supply and nitric oxide scavenging by myoglobin contribute to exercise endurance and cardiac function. FASEB J 2005; 19 (08) 1015-1017
  • 132 Gödecke A, Flögel U, Zanger K. et al. Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc Natl Acad Sci U S A 1999; 96 (18) 10495-10500
  • 133 Meeson AP, Radford N, Shelton JM. et al. Adaptive mechanisms that preserve cardiac function in mice without myoglobin. Circ Res 2001; 88 (07) 713-720
  • 134 Park JW, Piknova B, Dey S, Noguchi CT, Schechter AN. Compensatory mechanisms in myoglobin deficient mice preserve NO homeostasis. Nitric Oxide 2019; 90: 10-14
  • 135 Berenbrink M. The role of myoglobin in the evolution of mammalian diving capacity - the August Krogh principle applied in molecular and evolutionary physiology. Comp Biochem Physiol A Mol Integr Physiol 2021; 252: 110843
  • 136 Jansson E, Sylvén C. Myoglobin concentration in single type I and type II muscle fibres in man. Histochemistry 1983; 78 (01) 121-124
  • 137 Hoppeler H, Vogt M. Muscle tissue adaptations to hypoxia. J Exp Biol 2001; 204 (Pt 18): 3133-3139
  • 138 Cui T, Jiang MS. Myoglobin A79G polymorphism association with exercise-induced skeletal muscle damage. Genet Mol Res 2016; 15 (02) DOI: 10.4238/gmr.15027506.
  • 139 Wichardt E, Mattsson CM, Ekblom B, Henriksson-Larsén K. Rhabdomyolysis/myoglobinemia and NSAID during 48 h ultra-endurance exercise (adventure racing). Eur J Appl Physiol 2011; 111 (07) 1541-1544
  • 140 Zutt R, van der Kooi AJ, Linthorst GE, Wanders RJ, de Visser M. Rhabdomyolysis: review of the literature. Neuromuscul Disord 2014; 24 (08) 651-659
  • 141 Lovece S, Kagen LJ. Sensitive rapid detection of myoglobin in serum of patients with myopathy by immunoturbidimetric assay. J Rheumatol 1993; 20 (08) 1331-1334
  • 142 Zhang L, Kang Y, Fu P. et al. Myoglobin clearance by continuous venous-venous haemofiltration in rhabdomyolysis with acute kidney injury: a case series. Injury 2012; 43 (05) 619-623
  • 143 Zhang YY, Wasserman K, Sietsema KE. et al. O2 uptake kinetics in response to exercise. A measure of tissue anaerobiosis in heart failure. Chest 1993; 103 (03) 735-741
  • 144 Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bülow J, Kjaer M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 2001; 11 (04) 213-222
  • 145 Rudroff T, Ketelhut NB, Kindred JH. Metabolic imaging in exercise physiology. J Appl Physiol 2018; 124 (02) 497-503
  • 146 Suminski RR, Robertson RJ, Goss FL, Arslanian S. Peak oxygen consumption and skeletal muscle bioenergetics in African-American and Caucasian men. Med Sci Sports Exerc 2000; 32 (12) 2059-2066
  • 147 Murakami M, Katsumura T, Hamaoka T. et al. Effects of epinephrine and lactate on the increase in oxygen consumption of nonexercising skeletal muscle after aerobic exercise. J Biomed Opt 2000; 5 (04) 406-410
  • 148 Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain. StatPearls [Internet]. Updated 2022 Sep 5. Treasure Island, FL: StatPearls Publishing; 2023
  • 149 Pallotti F, Bergamini C, Lamperti C, Fato R. The roles of coenzyme Q in disease: direct and indirect involvement in cellular functions. Int J Mol Sci 2021; 23 (01) 128
  • 150 Bandara AB, Drake JC, Brown DA. Complex II subunit SDHD is critical for cell growth and metabolism, which can be partially restored with a synthetic ubiquinone analog. BMC Mol Cell Biol 2021; 22 (01) 35
  • 151 Kadenbach B. Complex IV - The regulatory center of mitochondrial oxidative phosphorylation. Mitochondrion 2021; 58: 296-302
  • 152 Calbet JAL, Martín-Rodríguez S, Martin-Rincon M, Morales-Alamo D. An integrative approach to the regulation of mitochondrial respiration during exercise: focus on high-intensity exercise. Redox Biol 2020; 35: 101478
  • 153 Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 2008; 88 (01) 287-332
  • 154 Nanadikar MS, Vergel Leon AM, Borowik S. et al. O2 affects mitochondrial functionality ex vivo. Redox Biol 2019; 22: 101152
  • 155 Larsen FJ, Schiffer TA, Sahlin K, Ekblom B, Weitzberg E, Lundberg JO. Mitochondrial oxygen affinity predicts basal metabolic rate in humans. FASEB J 2011; 25 (08) 2843-2852
  • 156 Verkhovsky MI, Morgan JE, Puustein A, Wikström M. Kinetic trapping of oxygen in cell respiration. Nature 1996; 380 (6571): 268-270
  • 157 Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R. Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 1998; 201 (Pt 8): 1129-1139
  • 158 Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 2019; 44 (01) 3-15
  • 159 Gorman GS, Chinnery PF, DiMauro S. et al. Mitochondrial diseases. Nat Rev Dis Primers 2016; 2 (01) 16080
  • 160 Chinnery PF. Primary mitochondrial disorders overview. University of Washington. Jul 29, 2021. Accessed May 29, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK1224/
  • 161 Hage R, Vignal-Clermont C. Leber hereditary optic neuropathy: review of treatment and management. Front Neurol 2021; 12: 651639
  • 162 Crofts AR. The cytochrome bc1 complex: function in the context of structure. Annu Rev Physiol 2004; 66: 689-733
  • 163 Arulkumaran N, Deutschman CS, Pinsky MR. et al; ADQI XIV Workgroup. Mitochondrial function in sepsis. Shock 2016; 45 (03) 271-281
  • 164 Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res 2007; 100 (04) 460-473
  • 165 Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab 2019; 316 (02) E268-E285
  • 166 Zhunina OA, Yabbarov NG, Grechko AV. et al. The role of mitochondrial dysfunction in vascular disease, tumorigenesis, and diabetes. Front Mol Biosci 2021; 8: 671908
  • 167 Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR. et al. Is mitochondrial dysfunction a common root of noncommunicable chronic diseases?. Endocr Rev 2020; 41 (03) bnaa005
  • 168 Cloonan SM, Kim K, Esteves P, Trian T, Barnes PJ. Mitochondrial dysfunction in lung ageing and disease. Eur Respir Rev 2020; 29 (157): 200165
  • 169 Zhang WZ, Rice MC, Hoffman KL. et al; SPIROMICS Investigators. Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. JCI Insight 2020; 5 (03) e133984
  • 170 Yubero D, Montero R, Santos-Ocaña C, Salviati L, Navas P, Artuch R. Molecular diagnosis of coenzyme Q10 deficiency: an update. Expert Rev Mol Diagn 2018; 18 (06) 491-498
  • 171 Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis 2015; 38 (01) 145-156
  • 172 Mahmud T, Rafi SS, Scott DL, Wrigglesworth JM, Bjarnason I. Nonsteroidal antiinflammatory drugs and uncoupling of mitochondrial oxidative phosphorylation. Arthritis Rheum 1996; 39 (12) 1998-2003
  • 173 Warrick BJ, King A, Smolinske S, Thomas R, Aaron C. A 29-year analysis of acute peak salicylate concentrations in fatalities reported to United States poison centers. Clin Toxicol (Phila) 2018; 56 (09) 846-851
  • 174 Ciejka M, Nguyen K, Bluth MH, Dubey E. Drug toxicities of common analgesic medications in the emergency department. Clin Lab Med 2016; 36 (04) 761-776
  • 175 Juurlink DN, Gosselin S, Kielstein JT. et al; EXTRIP Workgroup. Extracorporeal treatment for salicylate poisoning: systematic review and recommendations from the EXTRIP workgroup. Ann Emerg Med 2015; 66 (02) 165-181
  • 176 Randi EB, Zuhra K, Pecze L, Panagaki T, Szabo C. Physiological concentrations of cyanide stimulate mitochondrial Complex IV and enhance cellular bioenergetics. Proc Natl Acad Sci U S A 2021; 118 (20) e2026245118
  • 177 Zuhra K, Szabo C. The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter. FEBS J 2022; 289 (09) 2481-2515
  • 178 Gracia R, Shepherd G. Cyanide poisoning and its treatment. Pharmacotherapy 2004; 24 (10) 1358-1365
  • 179 Thompson JP, Marrs TC. Hydroxocobalamin in cyanide poisoning. Clin Toxicol (Phila) 2012; 50 (10) 875-885
  • 180 Bebarta VS, Brittain M, Chan A. et al. Sodium nitrite and sodium thiosulfate are effective against acute cyanide poisoning when administered by intramuscular injection. Ann Emerg Med 2017; 69 (06) 718.e4-725.e4
  • 181 Sylvester DM, Hayton WL, Morgan RL, Way JL. Effects of thiosulfate on cyanide pharmacokinetics in dogs. Toxicol Appl Pharmacol 1983; 69 (02) 265-271
  • 182 Hansen MB, Olsen NV, Hyldegaard O. Combined administration of hyperbaric oxygen and hydroxocobalamin improves cerebral metabolism after acute cyanide poisoning in rats. J Appl Physiol 2013; 115 (09) 1254-1261
  • 183 Takano T, Miyazaki Y, Nashimoto I, Kobayashi K. Effect of hyperbaric oxygen on cyanide intoxication: in situ changes in intracellular oxidation reduction. Undersea Biomed Res 1980; 7 (03) 191-197
  • 184 Smilkstein MJ, Bronstein AC, Pickett HM, Rumack BH. Hyperbaric oxygen therapy for severe hydrogen sulfide poisoning. J Emerg Med 1985; 3 (01) 27-30
  • 185 Weibel ER, Taylor CR, Hoppeler H. The concept of symmorphosis: a testable hypothesis of structure-function relationship. Proc Natl Acad Sci U S A 1991; 88 (22) 10357-10361
  • 186 Taylor CR, Weibel ER, Weber JM. et al. Design of the oxygen and substrate pathways. I. Model and strategy to test symmorphosis in a network structure. J Exp Biol 1996; 199 (Pt 8): 1643-1649