Skip to main content
Log in

From \(2N\) to Infinitely Many Escape Orbits

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

This article has been updated

Abstract

In this short note, we prove that singular Reeb vector fields associated with generic \(b\)-contact forms on three dimensional manifolds with compact embedded critical surfaces have either (at least) \(2N\) or an infinite number of escape orbits, where \(N\) denotes the number of connected components of the critical set. In case where the first Betti number of a connected component of the critical surface is positive, there exist infinitely many escape orbits. A similar result holds in the case of \(b\)-Beltrami vector fields that are not \(b\)-Reeb. The proof is based on a more detailed analysis of the main result in [19].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 29 October 2023

    The numbering issue has been changed to 4-5.

References

  1. Braddell, R., Delshams, A., Miranda, E., Oms, C., and Planas, A., An Invitation to Singular Symplectic Geometry, Int. J. Geom. Methods Mod. Phys., 2019, vol. 16, suppl. 1, 1940008, 16 pp.

    Article  MathSciNet  MATH  Google Scholar 

  2. Cavalcanti, G. R., Examples and Counter-Examples of Log-Symplectic Manifolds, J. Topol., 2017, vol. 10, no. 1, pp. 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cardona, R., Miranda, E., and Peralta-Salas, D., Euler Flows and Singular Geometric Structures, Philos. Trans. Roy. Soc. A, 2019, vol. 377, no. 2158, 20190034, 15 pp.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cardona, R., Miranda, E., Peralta-Salas, D., and Presas, F., Constructing Turing Complete Euler Flows in Dimension \(3\), Proc. Natl. Acad. Sci. USA, 2021, vol. 118, no. 19, Paper No. e2026818118, 9 pp.

    Article  MathSciNet  Google Scholar 

  5. Chenciner, A., Poincaré and the Three-Body Problem, in Henri Poincaré, 1912–2012: Proc. of the 16th Poincaré Seminar (Paris, Nov 2012), B. Duplantier, V. Rivasseau (Eds.), Prog. Math. Phys., vol. 67, Basel: Birkhäuser/Springer, 2015, pp. 51–149.

    Chapter  Google Scholar 

  6. Chenciner, A., À l’infini en temps fini, in Séminaire Bourbaki: Vol. 1996/97, Exp. 832,, Astérisque, vol. 245, Paris: Soc. Math. France, 1997, pp. 323–353.

    Google Scholar 

  7. Colin, V., Dehornoy, P., and Rechtman, A., On the Existence of Supporting Broken Book Decompositions for Contact Forms in Dimension \(3\), Invent. Math., 2023, vol. 231, no. 3, pp. 1489–1539.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cristofaro-Gardiner, D. and Hutchings, M., From One Reeb Orbit to Two, J. Differential Geom., 2016, vol. 102, no. 1, pp. 25–36.

    Article  MathSciNet  MATH  Google Scholar 

  9. Delshams, A., Kaloshin, V., de la Rosa, A., and Seara, T. M., Global Instability in the Restricted Planar Elliptic Three Body Problem, Comm. Math. Phys., 2019, vol. 366, no. 3, pp. 1173–1228.

    Article  MathSciNet  MATH  Google Scholar 

  10. Etnyre, J. and Ghrist, R., Contact Topology and Hydrodynamics: 1. Beltrami Fields and the Seifert Conjecture, Nonlinearity, 2000, vol. 13, no. 2, pp. 441–458.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ginzburg, V. L. and Gürel, B. Z., The Conley Conjecture and Beyond, Arnold Math. J., 2015, vol. 1, no. 3, pp. 299–337.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gualtieri, M. and Li, S., Symplectic Groupoids of Log Symplectic Manifolds, Int. Math. Res. Not. IMRN, 2014, vol. 11, pp. 3022–3074.

    Article  MathSciNet  MATH  Google Scholar 

  13. Guillemin, V., Miranda, E., and Pires, A. R., Symplectic and Poisson Geometry on \(b\)-Manifolds, Adv. Math., 2014, vol. 264, pp. 864–896.

    Article  MathSciNet  MATH  Google Scholar 

  14. Irie, K., Dense Existence of Periodic Reeb Orbits and ECH Spectral Invariants, J. Mod. Dyn., 2015, vol. 9, pp. 357–363.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kiesenhofer, A., Miranda, E., and Scott, G., Action–Angle Variables and a KAM Theorem for \(b\)-Poisson Manifolds, J. Math. Pures Appl. (9), 2016, vol. 105, no. 1, pp. 66–85.

    Article  MathSciNet  MATH  Google Scholar 

  16. Melrose, R., The Atiyah – Patodi – Singer Index Theorem, New York: Chapman & Hall/CRC, 1993.

    Book  MATH  Google Scholar 

  17. Miranda, E. and Oms, C., Contact Structures with Singularities: From Local to Global, arXiv:1806.05638 (2018).

  18. Miranda, E. and Oms, C., The Singular Weinstein Conjecture, Adv. Math., 2021, vol. 389, Paper No. 107925, 41 pp.

    Article  MathSciNet  MATH  Google Scholar 

  19. Miranda, E., Oms, C., and Peralta-Salas, D., On the Singular Weinstein Conjecture and the Existence of Escape Orbits for \(b\)-Beltrami Fields, Commun. Contemp. Math., 2022, vol. 24, no. 7, Paper No. 2150076, 25 pp.

    Article  MathSciNet  MATH  Google Scholar 

  20. Miranda, E. and Scott, G., The Geometry of \(E\)-Manifolds, Rev. Mat. Iberoam., 2021, vol. 37, no. 3, pp. 1207–1224.

    MathSciNet  MATH  Google Scholar 

  21. Nest, R. and Tsygan, B., Formal Deformations of Symplectic Manifolds with Boundary, J. Reine Angew. Math., 1996, vol. 481, pp. 27–54.

    MathSciNet  MATH  Google Scholar 

  22. Peralta-Salas, D. and Slobodeanu, R., Contact Structures and Beltrami Fields on the Torus and the Sphere, Indiana Univ. Math. J., 2023, vol. 72, no. 2, pp. 699–730.

    Article  MathSciNet  MATH  Google Scholar 

  23. del Pino, Á. and Witte, A., Regularisation of Lie Algebroids and Applications, arXiv:2211.14891 (2022).

  24. Scott, G., The Geometry of \(b^{k}\) Manifolds, J. Symplectic Geom., 2016, vol. 14, no. 1, pp. 71–95.

    Article  MathSciNet  MATH  Google Scholar 

  25. Sullivan, D., Contact Structures and Ideal Fluid Motion: Part 1, in CUNY Einstein Chair Mathematics Seminar Video,https://www.math.stonybrook.edu/Videos/Einstein/425-19941109-Sullivan.html(Nov 1994).

  26. Taubes, C. H., The Seiberg – Witten Equations and the Weinstein Conjecture, Geom. Topol., 2007, vol. 11, no. 4, pp. 2117–2202.

    Article  MathSciNet  MATH  Google Scholar 

  27. Uhlenbeck, K., Generic Properties of Eigenfunctions, Amer. J. Math., 1976, vol. 98, no. 4, pp. 1059–1078.

    Article  MathSciNet  MATH  Google Scholar 

  28. Vogel, M. and Wisniewska, J., \(b\)-Contact Structures on Tentacular Hyperboloids, J. Geom. Phys., 2023, vol. 191, Paper No. 104867.

  29. Weinstein, A., On the Hypotheses of Rabinowitz’ Periodic Orbit Theorems, J. Differential Equations, 1979, vol. 33, no. 3, pp. 353–358.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are indebted to the valuable comments of the anonymous referees that improved substantially the results, proofs and the presentation of the previous version of this paper.

Funding

Josep Fontana-McNally was supported by an INIREC grant of introduction to research financed under the project “Computational, Dynamical and Geometrical Complexity in Fluid Dynamics”, Ayudas Fundación BBVA a Proyectos de Investigación Científica 2021. Josep Fontana, Eva Miranda and Cédric Oms are partially supported by the Spanish State Research Agency grant PID2019-103849GB-I00 of AEI / 10.13039/501100011033 and by the AGAUR project 2021 SGR 00603. Eva Miranda is supported by the Catalan Institution for Research and Advanced Studies via an ICREA Academia Prize 2021 and by the Alexander Von Humboldt foundation via a Friedrich Wilhelm Bessel Research Award. Eva Miranda is also supported by the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (project CEX2020-001084-M). Eva Miranda and Daniel Peralta-Salas acknowledge partial support from the grant “Computational, Dynamical and Geometrical Complexity in Fluid Dynamics”, Ayudas Fundación BBVA a Proyectos de Investigación Científica 2021. Cédric Oms acknowledges financial support from the Margarita Salas postdoctoral contract financed by the European Union-NextGenerationEU and is partially supported by the ANR grant “Cosy” (ANR-21-CE40-0002), partially supported by the ANR grant “CoSyDy” (ANR-CE40-0014). Daniel Peralta-Salas is supported by the grants CEX2019-000904-S, RED2022-134301-T and PID2019-106715GB GB-C21 funded by MCIN/AEI/10.13039/501100011033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Miranda.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

53D05, 53D17, 37N05

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontana-McNally, J., Miranda, E., Oms, C. et al. From \(2N\) to Infinitely Many Escape Orbits. Regul. Chaot. Dyn. 28, 498–511 (2023). https://doi.org/10.1134/S1560354723520039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354723520039

Keywords

Navigation