Skip to main content
Log in

Emergence of Strange Attractors from Singularities

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

This article has been updated

Abstract

This paper is a summary of results that prove the abundance of one-dimensional strange attractors near a Shil’nikov configuration, as well as the presence of these configurations in generic unfoldings of singularities in \(\mathbb{R}^{3}\) of minimal codimension. Finding these singularities in families of vector fields is analytically possible and thus provides a tractable criterion for the existence of chaotic dynamics. Alternative scenarios for the possible abundance of two-dimensional attractors in higher dimension are also presented. The role of Shil’nikov configuration is now played by a certain type of generalised tangency which should occur for families of vector fields \(X_{\mu}\) unfolding generically some low codimension singularity in \(\mathbb{R}^{n}\) with \(n\geqslant 4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 29 October 2023

    The numbering issue has been changed to 4-5.

References

  1. Shilnikov, L. P., A Case of the Existence of a Denumerable Set of Periodic Motions, Soviet Math. Dokl., 1965, vol. 6, pp. 163–166; see also: Dokl. Akad. Nauk SSSR, 1965, vol. 160, pp. 558-561.

    Google Scholar 

  2. Tresser, C., Modèles simples de transitions vers la turbulence, PhD Dissertation, Université de Nice Sophia-Antipolis, Nice, France, 1981, 313 pp.

  3. Mel’nikov, V. K., On the Stability of a Center for Time-Periodic Perturbations, Trans. Moscow Math. Soc., 1963, vol. 12, pp. 1–57; see also: Tr. Mosk. Mat. Obs., 1963, vol. 12, pp. 3-52.

    MathSciNet  MATH  Google Scholar 

  4. Bogdanov, R. I., Versal Deformations of a Singular Point of a Vector Field on the Plane in the Case of Zero Eigenvalues, Funct. Anal. Appl., 1975, vol. 9, no. 2, pp. 144–145; see also: Funktsional. Anal. i Prilozhen., 1975, vol. 9, no. 2, pp. 63.

    MathSciNet  MATH  Google Scholar 

  5. Takens, F., Singularities of Vector Fields, Publ. Math. Inst. Hautes Études Sci., 1974, no. 43, pp. 47–100.

    MathSciNet  MATH  Google Scholar 

  6. Mora, L. and Viana, M., Abundance of Strange Attractors, Acta Math., 1993, vol. 171, no. 1, pp. 1–71.

    MathSciNet  MATH  Google Scholar 

  7. Pumariño, A. and Rodríguez, J. Á., Coexistence and Persistence of Infinitely Many Strange Attractors, Ergodic Theory Dynam. Systems, 2001, vol. 21, no. 5, pp. 1511–1523.

    MathSciNet  MATH  Google Scholar 

  8. Benedicks, M. and Carleson, L., The Dynamics of the Hénon Map, Ann. of Math. (2), 1991, vol. 133, no. 1, pp. 73–169.

    MathSciNet  MATH  Google Scholar 

  9. Chow, Shui Nee, Hale, J. K., and Mallet-Paret, J., An Example of Bifurcation to Homoclinic Orbits, J. Differential Equations, 1980, vol. 37, no. 3, pp. 351–373.

    MathSciNet  MATH  Google Scholar 

  10. Ibáñez, S. and Rodríguez, J. Á., Sil’nikov Bifurcations in Generic \(4\)-Unfoldings of a Codimension-\(4\) Singularity, J. Differential Equations, 1995, vol. 120, no. 2, pp. 411–428.

    MathSciNet  MATH  Google Scholar 

  11. Ibáñez, S. and Rodríguez, J. Á., Shil’nikov Configurations in Any Generic Unfolding of the Nilpotent Singularity of Codimension Three on \(R^{3}\), J. Differential Equations, 2005, vol. 208, no. 1, pp. 147–175.

    MathSciNet  MATH  Google Scholar 

  12. Arneodo, A., Coullet, P. H., Spiegel, E. A., and Tresser, C., Asymptotic Chaos, Phys. D, 1985, vol. 14, no. 3, pp. 327–347.

    MathSciNet  MATH  Google Scholar 

  13. Dumortier, F., Ibáñez, S., Kokubu, H., and Simó, C., About the Unfolding of a Hopf-Zero Singularity, Discrete Contin. Dyn. Syst., 2013, vol. 33, no. 10, pp. 4435–4471.

    MathSciNet  MATH  Google Scholar 

  14. Baldomá, I., Ibáñez, S., and Seara, T. M., Hopf-Zero Singularities Truly Unfold Chaos, Commun. Nonlinear Sci. Numer. Simul., 2020, vol. 84, 105162, 19 pp.

    MathSciNet  MATH  Google Scholar 

  15. Drubi, F., Ibáñez, S., and Rodríguez, J. Á., Coupling Leads to Chaos, J. Differential Equations, 2007, vol. 239, no. 2, pp. 371–385.

    MathSciNet  MATH  Google Scholar 

  16. Turing, A. M., The Chemical Basis of Morphogenesis, Bull. Math. Biol., 1990, vol. 52, no. 1–2, pp. 153–197.

    Google Scholar 

  17. Tatjer, J. C., Three-Dimensional Dissipative Diffeomorphisms with Homoclinic Tangencies, Ergodic Theory Dynam. Systems, 2001, vol. 21, no. 1, pp. 249–302.

    MathSciNet  MATH  Google Scholar 

  18. Pumariño, A. and Tatjer, J. C., Attractors for Return Maps near Homoclinic Tangencies of Three-Dimensional Dissipative Diffeomorphisms, Discrete Contin. Dyn. Syst. Ser. B, 2007, vol. 8, no. 4, pp. 971–1005.

    MathSciNet  MATH  Google Scholar 

  19. Birkhoff, G. D., Nouvelles recherches sur les systm̀es dynamiques, Mem. Pontif. Accad. Romana Nuovi Lincei (3), 1934, vol. 1, pp. 85–216.

    MATH  Google Scholar 

  20. Smale, S., Diffeomorphisms with Many Periodic Points, in Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse, S. S. Cairns (Ed.), Princeton, N.J.: Princeton Univ. Press, 1965, pp. 63–80.

    Google Scholar 

  21. Shilnikov, L. P., On a Poincaré – Birkhoff Problem, Math. USSR-Sb., 1967, vol. 3, no. 3, pp. 353–371; see also: Mat. Sb. (N. S.), 1967, vol. 74(116), no. 3, pp. 378-397.

    Google Scholar 

  22. Shil’nikov, L. P., A Contribution to the Problem of the Structure of an Extended Neighbourhood of a Rough Equilibrium State of Saddle-Focus Type, Math. USSR-Sb., 1970, vol. 10, no. 1, pp. 91–102; see also: Mat. Sb. (N. S.), 1970, vol. 81(123), no. 1, pp. 92-103.

    MATH  Google Scholar 

  23. Shilnikov, L. P., Existence of a Countable Set of Periodic Motions in a Four-Dimensional Space in an Extended Neighborhood of a saddle-focus, Soviet Math. Dokl., 1967, vol. 8, no. 1, pp. 54–58; see also: Dokl. Akad. Nauk SSSR, 1967, vol. 172, no. 1, pp. 54-57.

    MathSciNet  Google Scholar 

  24. Benedicks, M. and Carleson, L., On Iterations of \(1-ax^{2}\) on \((-1,1)\), Ann. of Math. (2), 1985, vol. 122, no. 1, pp. 1–25.

    MathSciNet  MATH  Google Scholar 

  25. Pumariño, A. and Rodríguez, J. Á., Coexistence and Persistence of Strange Attractors, Lecture Notes in Math., vol. 1658, Berlin: Springer, 1997.

    MATH  Google Scholar 

  26. Arneodo, A., Coullet, P., and Tresser, C., Possible New Strange Attractors with a Spiral Structure, Comm. Math. Phys., 1981, vol. 79, no. 4, pp. 573–579.

    MathSciNet  MATH  Google Scholar 

  27. Rodríguez, J. Á., Bifurcation to Homoclinic Connections of the Focus-Saddle Type, Arch. Rational Mech. Anal., 1986, vol. 93, no. 1, pp. 81–90.

    MathSciNet  MATH  Google Scholar 

  28. Holmes, P. J., Averaging and Chaotic Motions in Forced Oscillations, SIAM J. Appl. Math., 1980, vol. 38, no. 1, pp. 65–80.

    MathSciNet  MATH  Google Scholar 

  29. Belyakov, L. A., Bifurcation Set in a System with Homoclinic Saddle Curve, Math. Notes, 1980, vol. 28, no. 6, pp. 910–916; see also: Mat. Zametki, 1980, vol. 28, no. 6, pp. 911-922, 962.

    MathSciNet  MATH  Google Scholar 

  30. Costal, F. and Rodríguez, J. Á., A Bifurcation Problem to Homoclinic Orbits for Non-Autonomous Systems, J. Math. Anal. Appl., 1985, vol. 105, no. 2, pp. 395–404.

    MathSciNet  MATH  Google Scholar 

  31. Costal, F. and Rodríguez, J. Á., Bifurcation to Homoclinic Orbits and to Periodic Solutions for Non-Autonomous Three-Dimensional Systems, Arch. Rational Mech. Anal., 1988, vol. 104, no. 2, pp. 185–194.

    MathSciNet  MATH  Google Scholar 

  32. Dumortier, F. and Ibáñez, S., Nilpotent Singularities in Generic \(4\)-Parameter Families of \(3\)-Dimensional Vector Fields, J. Differential Equations, 1996, vol. 127, no. 2, pp. 590–647.

    MathSciNet  MATH  Google Scholar 

  33. Dumortier, F., Ibáñez, S., and Kokubu, H., New Aspects in the Unfolding of the Nilpotent Singularity of Codimension Three, Dyn. Syst., 2001, vol. 16, no. 1, pp. 63–95.

    MathSciNet  MATH  Google Scholar 

  34. Kuramoto, Y. and Tsuzuki, T., Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium, Prog. Theor. Phys., 1976, vol. 55, no. 2, pp. 356–369.

    Google Scholar 

  35. Barrientos, P. G., Ibáñez, S., and Rodríguez, J. Á., Heteroclinic Cycles Arising in Generic Unfoldings of Nilpotent Singularities, J. Dynam. Differential Equations, 2011, vol. 23, no. 4, pp. 999–1028.

    MathSciNet  MATH  Google Scholar 

  36. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol. 42, New York: Springer, 2002.

    MATH  Google Scholar 

  37. Barrientos, P. G., Ibáñez, S., Rodrigues, A. A., and Rodríguez, J. Á., Emergence of Chaotic Dynamics from Singularities, in \(\mathit{32^{\circ}}\) Colóquio Brasileiro de Matemática (Rio de Janeiro, 2019), Rio de Janeiro: IMPA, 2019.

    MATH  Google Scholar 

  38. Shil’nikov, A. L., Shil’nikov, L. P., and Turaev, D. V., Normal Forms and Lorenz Attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1993, vol. 3, no. 5, pp. 1123–1139.

    MathSciNet  MATH  Google Scholar 

  39. Palmer, K. J., Exponential Dichotomies and Transversal Homoclinic Points, J. Differential Equations, 1984, vol. 55, no. 2, pp. 225–256.

    MathSciNet  MATH  Google Scholar 

  40. Amick, C. J. and Toland, J. F., Homoclinic Orbits in the Dynamic Phase-Space Analogy of an Elastic Strut, European J. Appl. Math., 1992, vol. 3, no. 2, pp. 97–114.

    MathSciNet  MATH  Google Scholar 

  41. Buffoni, B., Champneys, A. R., and Toland, J. F., Bifurcation and Coalescence of a Plethora of Homoclinic Orbits for a Hamiltonian System, J. Dynam. Differential Equations, 1996, vol. 8, no. 2, pp. 221–279.

    MathSciNet  MATH  Google Scholar 

  42. Fowler, A. C. and Sparrow, C. T., Bifocal Homoclinic Orbits in Four Dimensions, Nonlinearity, 1991, vol. 4, no. 4, pp. 1159–1182.

    MathSciNet  MATH  Google Scholar 

  43. Ovsyannikov, I. M. and Shilnikov, L. P., Systems with a Homoclinic Curve of Multidimensional Saddle-Focus Type, and Spiral Chaos, Math. USSR Sb., 1992, vol. 73, no. 2, pp. 415–443; see also: Mat. Sb., 1991, vol. 182, no. 7, pp. 1043-1073.

    MathSciNet  MATH  Google Scholar 

  44. Devaney, R. L., Homoclinic Orbits in Hamiltonian Systems, J. Differential Equations, 1976, vol. 21, no. 2, pp. 431–438.

    MathSciNet  MATH  Google Scholar 

  45. Gonchenko, S. V., Shilnikov, L. P., and Turaev, D. V., Dynamical Phenomena in Multidimensional Systems with a Structurally Unstable Homoclinic Poincaré Curve, Russian Acad. Sci. Dokl. Math., 1993, vol. 47, no. 3, pp. 410–415; see also: Ross. Akad. Nauk Dokl., 1993, vol. 330, no. 2, pp. 144-147.

    MathSciNet  Google Scholar 

  46. Gonchenko, S. V., Shil’nikov, L. P., and Turaev, D. V., Dynamical Phenomena in Systems with Structurally Unstable Poincaré Homoclinic Orbits, Chaos, 1996, vol. 6, no. 1, pp. 15–31.

    MathSciNet  MATH  Google Scholar 

  47. Gonchenko, S. V., Shilnikov, L. P., and Turaev, D. V., On Dynamical Properties of Multidimensional Diffeomorphisms from Newhouse Regions: 1, Nonlinearity, 2008, vol. 21, no. 5, pp. 923–972.

    MathSciNet  MATH  Google Scholar 

  48. Mira, Ch., Gardini, L., Barugola, A., and Cathala, J.-C., Chaotic Dynamics in Two-Dimensional Noninvertible Maps, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 20, River Edge, N.J.: World Sci., 1996.

    MATH  Google Scholar 

  49. Pumariño, A. and Tatjer, J. C., Dynamics near Homoclinic Bifurcations of Three-Dimensional Dissipative Diffeomorphisms, Nonlinearity, 2006, vol. 19, no. 12, pp. 2833–2852.

    MathSciNet  MATH  Google Scholar 

  50. Pumariño, A., Rodríguez, J. Á., Tatjer, J. C., and Vigil, E., Expanding Baker Maps As Models for the Dynamics Emerging from 3D-Homoclinic Bifurcations, Discrete Contin. Dyn. Syst. Ser. B, 2014, vol. 19, no. 2, pp. 523–541.

    MathSciNet  MATH  Google Scholar 

  51. Pumariño, A., Rodríguez, J. Á., Tatjer, J. C., and Vigil, E., Chaotic Dynamics for Two-Dimensional Tent Maps, Nonlinearity, 2015, vol. 28, no. 2, pp. 407–434.

    MathSciNet  MATH  Google Scholar 

  52. Pumariño, A., Rodríguez, J. Á., and Vigil, E., Renormalizable Expanding Baker Maps: Coexistence of Strange Attractors, Discrete Contin. Dyn. Syst., 2017, vol. 37, no. 3, pp. 1651–1678.

    MathSciNet  MATH  Google Scholar 

  53. Pumariño, A., Rodríguez, J. Á., and Vigil, E., Renormalization of Two-Dimensional Piecewise Linear Maps: Abundance of \(2\)-D Strange Attractors, Discrete Contin. Dyn. Syst., 2018, vol. 38, no. 2, pp. 941–966.

    MathSciNet  MATH  Google Scholar 

  54. Pumariño, A., Rodríguez, J. Á., and Vigil, E., Persistent Two-Dimensional Strange Attractors for a Two-Parameter Family of Expanding Baker Maps, Discrete Continuous Dyn. Syst. Ser. B, 2019, vol. 24, no. 2, pp. 657–670.

    MathSciNet  MATH  Google Scholar 

  55. Marqués-Lobeiras, A., Pumariño, A., Rodríguez, J. Á., and Vigil, E., Strictly Invariant Sets for \(2\)-D Tent Maps: \(2\)-D Strange Attractors, Bol. Soc. Brasil. Mat. (N.S.), 2023, vol. 54, no. 1, Paper No. 10, 28 pp.

    MathSciNet  MATH  Google Scholar 

  56. Marqués-Lobeiras, A., Pumariño, A., Rodríguez, J. Á., and Vigil, E., Splitting and Coexistence of \(2\)-D Strange Attractors in a General Family of Expanding Baker Maps, Nonlinearity, 2023, vol. 36, pp. 4247–4282.

Download references

Funding

During the preparation of this paper, the author was supported by Spanish Research project PID2020-113052GB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Angel Rodríguez.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

MSC2010

34C23, 37D05, 37D25, 37D45, 37G05, 37G10, 37G25

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, J.A. Emergence of Strange Attractors from Singularities. Regul. Chaot. Dyn. 28, 468–497 (2023). https://doi.org/10.1134/S1560354723520040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354723520040

Keywords

Navigation