Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

The Emerging Roles of circRNAs in Papillary Thyroid Carcinoma: Molecular Mechanisms and Biomarker Potential

Author(s): Haihan Ye, Xiaoyang Sun, Qianyun Ding, Enyu Yang, Shuo Zhao, Xiaowei Fan, Meiyu Fang and Xianfeng Ding*

Volume 30, Issue 9, 2023

Published on: 29 August, 2023

Page: [709 - 718] Pages: 10

DOI: 10.2174/0929866530666230804104057

Price: $65

Abstract

Papillary thyroid carcinoma (PTC) is a common endocrine malignant tumor. The incidence of PTC has increased in the past decades and presents a younger trend. Accumulating evidence indicates that circular RNAs (circRNAs), featured with non-linear, closed-loop structures, play pivotal roles in tumorigenesis and regulate cell biological processes, such as proliferation, migration, and invasion, by acting as microRNA (miRNA) sponges. Additionally, due to their unique stability, circRNAs hold promising potential as diagnostic biomarkers and effective therapeutic targets for PTC treatment. In this review, we systematically arrange the expression level of circRNAs, related clinical characteristics, circRNA-miRNA-mRNA regulatory network, and molecular mechanisms. Furthermore, related signaling pathways and their potential ability of diagnostic biomarkers and therapeutic targets are discussed, which might provide a new strategy for PTC diagnosis, monitoring, and prognosis.

Keywords: Biomarker, circRNA, molecular mechanism, papillary thyroid carcinoma, sponges, miRNA.

Next »
Graphical Abstract
[1]
Zhou, G.K.; Zhang, G.Y.; Yuan, Z.N.; Pei, R.; Liu, D.M. Has_circ_0008274 promotes cell proliferation and invasion involving AMPK/mTOR signaling pathway in papillary thyroid carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(24), 8772-8780.
[PMID: 30575918]
[2]
Li, Z.; Xu, J.; Guan, H.; Lai, J.; Yang, X.; Ma, J. Circ_0059354 aggravates the progression of papillary thyroid carcinoma by elevating ARFGEF1 through sponging miR-766-3p. J. Endocrinol. Invest., 2022, 45(4), 825-836.
[http://dx.doi.org/10.1007/s40618-021-01713-2] [PMID: 34854069]
[3]
Zheng, H.; Fu, Q.; Ma, K.; Shi, S.; Fu, Y. Circ_0079558 promotes papillary thyroid cancer progression by binding to miR-26b-5p to activate MET/AKT signaling. Endocr. J., 2021, 68(11), 1247-1266.
[http://dx.doi.org/10.1507/endocrj.EJ20-0498] [PMID: 34565758]
[4]
Bi, W.; Huang, J.; Nie, C.; Liu, B.; He, G.; Han, J.; Pang, R.; Ding, Z.; Xu, J.; Zhang, J. CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of β-catenin pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 275.
[http://dx.doi.org/10.1186/s13046-018-0936-7] [PMID: 30424816]
[5]
Cai, X.; Zhao, Z.; Dong, J.; Lv, Q.; Yun, B.; Liu, J.; Shen, Y.; Kang, J.; Li, J. Circular RNA circBACH2 plays a role in papillary thyroid carcinoma by sponging miR-139-5p and regulating LMO4 expression. Cell Death Dis., 2019, 10(3), 184.
[http://dx.doi.org/10.1038/s41419-019-1439-y] [PMID: 30796202]
[6]
Li, P.; Chen, J.; Zou, J.; Zhu, W.; Zang, Y.; Li, H. Circular RNA coiled-coil domain containing 66 regulates malignant development of papillary thyroid carcinoma by upregulating La ribonucleoprotein 1 via the sponge effect on miR-129-5p. Bioengineered, 2022, 13(3), 7181-7196.
[http://dx.doi.org/10.1080/21655979.2022.2036304] [PMID: 35264065]
[7]
Wang, L.; Wang, W.; Cai, Y.; Zhou, Y.; Jiang, J.; Ning, Y.; Shui, C.; Sun, R.; Wang, Y.; Li, C. Retracted Article: Circ-NUP214 promotes papillary thyroid carcinoma tumorigenesis by regulating hk2 expression through miR-15a-5p. Biochem. Genet., 2022, 60(4), 1408.
[http://dx.doi.org/10.1007/s10528-022-10192-w] [PMID: 35099648]
[8]
Li, X.; Tian, Y.; Hu, Y.; Yang, Z.; Zhang, L.; Luo, J. CircNUP214 sponges miR-145 to promote the expression of ZEB2 in thyroid cancer cells. Biochem. Biophys. Res. Commun., 2018, 507(1-4), 168-172.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.200] [PMID: 30415780]
[9]
Saporito, D.; Brock, P.; Hampel, H.; Sipos, J.; Fernandez, S.; Liyanarachchi, S.; de la Chapelle, A.; Nagy, R. Penetrance of a rare familial mutation predisposing to papillary thyroid cancer. Fam. Cancer, 2018, 17(3), 431-434.
[http://dx.doi.org/10.1007/s10689-017-0048-0] [PMID: 29027612]
[10]
Jin, X.; Wang, Z.; Pang, W.; Zhou, J.; Liang, Y.; Yang, J.; Yang, L.; Zhang, Q. Upregulated hsa_circ_0004458 contributes to progression of papillary thyroid carcinoma by inhibition of miR-885-5p and activation of RAC1. Med. Sci. Monit., 2018, 24, 5488-5500.
[http://dx.doi.org/10.12659/MSM.911095] [PMID: 30086127]
[11]
Zeng, L.; Yuan, S.; Zhou, P.; Gong, J.; Kong, X.; Wu, M. Circular RNA Pvt1 oncogene (CircPVT1) promotes the progression of papillary thyroid carcinoma by activating the Wnt/β-catenin signaling pathway and modulating the ratio of microRNA-195 (miR-195) to vascular endothelial growth factor A (VEGFA) expression. Bioengineered, 2021, 12(2), 11795-11810.
[http://dx.doi.org/10.1080/21655979.2021.2008639] [PMID: 34927541]
[12]
Wang, W.; Huang, C.; Luo, P.; Yao, J.; Li, J.; Wang, W.; Liu, F. Circular RNA circWDR27 promotes papillary thyroid cancer progression by regulating miR-215-5p/TRIM44 Axis. OncoTargets Ther., 2021, 14, 3281-3293.
[http://dx.doi.org/10.2147/OTT.S290270] [PMID: 34040392]
[13]
Zhang, W.; Liu, T.; Li, T.; Zhao, X. Hsa_circRNA_102002 facilitates metastasis of papillary thyroid cancer through regulating miR-488-3p/HAS2 axis. Cancer Gene Ther., 2021, 28(3-4), 279-293.
[http://dx.doi.org/10.1038/s41417-020-00218-z] [PMID: 32862195]
[14]
Wei, H.; Pan, L.; Tao, D.; Li, R. Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression. Biochem. Biophys. Res. Commun., 2018, 503(1), 56-61.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.174] [PMID: 29842886]
[15]
Li, C.; Zhu, L.; Fu, L.; Han, M.; Li, Y.; Meng, Z.; Qiu, X. CircRNA NRIP1 promotes papillary thyroid carcinoma progression by sponging mir-195-5p and modulating the P38 MAPK and JAK/STAT pathways. Diagn. Pathol., 2021, 16(1), 93.
[http://dx.doi.org/10.1186/s13000-021-01153-9] [PMID: 34689819]
[16]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[17]
Chu, J.; Tao, L.; Yao, T.; Chen, Z.; Lu, X.; Gao, L.; Fang, L.; Chen, J.; He, G.; Shen, S.; Zhang, D. Circular RNA circRUNX1 promotes papillary thyroid cancer progression and metastasis by sponging MiR-296-3p and regulating DDHD2 expression. Cell Death Dis., 2021, 12(1), 112.
[http://dx.doi.org/10.1038/s41419-020-03350-8] [PMID: 33479208]
[18]
Chen, L.; Zhuo, D.; Yuan, H. Circ_100395 impedes malignancy and glycolysis in papillary thyroid cancer: Involvement of PI3K/AKT/mTOR signaling pathway. Immunol. Lett., 2022, 246, 10-17.
[http://dx.doi.org/10.1016/j.imlet.2022.04.004] [PMID: 35447227]
[19]
Du, Y.L.; Liang, Y.; Cao, Y.; Liu, L.; Li, J.; Shi, G.Q. LncRNA XIST promotes migration and invasion of papillary thyroid cancer cell by modulating MiR-101-3p/CLDN1 Axis. Biochem. Genet., 2021, 59(2), 437-452.
[http://dx.doi.org/10.1007/s10528-020-09985-8] [PMID: 33057875]
[20]
Tang, Y.; Meng, X.; Yu, X.; Shang, H.; Chen, S.; Liao, L.; Dong, J. Retracted Article: Inhibition of microRNA-875-5p promotes radioiodine uptake in poorly differentiated thyroid carcinoma cells by upregulating sodium–iodide symporter. J. Endocrinol. Invest., 2020, 43(4), 439-450.
[http://dx.doi.org/10.1007/s40618-019-01125-3] [PMID: 31612419]
[21]
Ceolin, L.; Duval, M.A.S.; Benini, A.F.; Ferreira, C.V.; Maia, A.L. Medullary thyroid carcinoma beyond surgery: Advances, challenges, and perspectives. Endocr. Relat. Cancer, 2019, 26(9), R499-R518.
[http://dx.doi.org/10.1530/ERC-18-0574] [PMID: 31252403]
[22]
Wang, M.; Chen, B.; Ru, Z.; Cong, L. CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-catenin pathway. Biochem. Biophys. Res. Commun., 2018, 504(1), 283-288.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.175] [PMID: 30190130]
[23]
Ding, W.; Shi, Y.; Zhang, H. Circular RNA circNEURL4 inhibits cell proliferation and invasion of papillary thyroid carcinoma by sponging miR-1278 and regulating LATS1 expression. Am. J. Transl. Res., 2021, 13(6), 5911-5927.
[PMID: 34306334]
[24]
Tan, X.; Zhao, J.; Lou, J.; Zheng, W.; Wang, P. Hsa_circ_0058129 regulates papillary thyroid cancer development via miR-873-5p/follistatin-like 1 axis. J. Clin. Lab. Anal., 2022, 36(5), e24401.
[http://dx.doi.org/10.1002/jcla.24401] [PMID: 35373391]
[25]
Fu, L.; Huo, J.; Fitrat, H.; Kong, Y.; Zhang, L.; Shang, C.; Li, G.; Ji, F.; Fu, X.; Qiu, X. CircNRIP1 exerts oncogenic functions in papillary thyroid carcinoma by sponging miR-653-5p and regulating PBX3 expression. J. Oncol., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/2081501] [PMID: 35646117]
[26]
Jiang, Y.; Liu, W.; Jiang, L.; Chang, H. CircLDLR promotes papillary thyroid carcinoma tumorigenicity by regulating miR-637/LMO4 axis. Dis. Markers, 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/3977189] [PMID: 34925640]
[27]
Yin, Y.; Hong, S.; Yu, S.; Huang, Y.; Chen, S.; Liu, Y.; Zhang, Q.; Li, Y.; Xiao, H. MiR-195 inhibits tumor growth and metastasis in papillary thyroid carcinoma cell lines by targeting CCND1 and FGF2. Int. J. Endocrinol., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/6180425] [PMID: 28740507]
[28]
Fu, Q.; Sun, Z.; Yang, F.; Mao, T.; Gao, Y.; Wang, H. SOX30, a target gene of miR-653-5p, represses the proliferation and invasion of prostate cancer cells through inhibition of Wnt/β-catenin signaling. Cell. Mol. Biol. Lett., 2019, 24(1), 71.
[http://dx.doi.org/10.1186/s11658-019-0195-4] [PMID: 31889959]
[29]
Feng, Y.L.; Ke, T.; Wang, G.L.; Qi, H.Y.; Xiao, Y. MicroRNA-200c-3p negatively regulates ATP2A2 and promotes the progression of papillary thyroid carcinoma. Biochem. Genet., 2022, 60(5), 1676-1694.
[http://dx.doi.org/10.1007/s10528-022-10184-w] [PMID: 35079913]
[30]
Fan, Y.X.; Shi, H.Y.; Hu, Y.L.; Jin, X.L. Circ_0000144 facilitates the progression of thyroid cancer via the miR-217/AKT3 pathway. J. Gene Med., 2020, 22(12), e3269.
[http://dx.doi.org/10.1002/jgm.3269] [PMID: 32890417]
[31]
Blomberg, M.; Feldt-Rasmussen, U.; Andersen, K.K.; Kjaer, S.K. Thyroid cancer in Denmark 1943-2008, before and after iodine supplementation. Int. J. Cancer, 2012, 131(10), 2360-2366.
[http://dx.doi.org/10.1002/ijc.27497] [PMID: 22337133]
[32]
Ge, M.H.; Cao, J.; Wang, J.Y.; Huang, Y.Q.; Lan, X.B.; Yu, B.; Wen, Q.L.; Cai, X.J. Nomograms predicting disease-specific regional recurrence and distant recurrence of papillary thyroid carcinoma following partial or total thyroidectomy. Medicine, 2017, 96(30), e7575.
[http://dx.doi.org/10.1097/MD.0000000000007575] [PMID: 28746205]
[33]
Ma, Y.; Yang, D.; Guo, P. Circ_0000144 acts as a miR-1178-3p decoy to promote cell malignancy and angiogenesis by increasing YWHAH expression in papillary thyroid cancer. J. Otolaryngol. Head Neck Surg., 2022, 51(1), 28.
[http://dx.doi.org/10.1186/s40463-022-00574-w] [PMID: 35902926]
[34]
Wang, Y.; Zong, H.; Zhou, H. Circular RNA circ_0062389 modulates papillary thyroid carcinoma progression via the miR-1179/high mobility group box 1 axis. Bioengineered, 2021, 12(1), 1484-1494.
[http://dx.doi.org/10.1080/21655979.2021.1914470] [PMID: 33926347]
[35]
Dong, L.P.; Chen, L.Y.; Bai, B.; Qi, X.F.; Liu, J.N.; Qin, S. circ_0067934 promotes the progression of papillary thyroid carcinoma cells through miR-1301-3p/HMGB1 axis. Neoplasma, 2022, 69(1), 1-15.
[http://dx.doi.org/10.4149/neo_2021_210608N771] [PMID: 34704451]
[36]
Liu, Y.; Chen, G.; Wang, B.; Wu, H.; Zhang, Y.; Ye, H. Silencing circRNA protein kinase C iota (circ-PRKCI) suppresses cell progression and glycolysis of human papillary thyroid cancer through circ-PRKCI/miR-335/E2F3 ceRNA axis. Endocr. J., 2021, 68(6), 713-727.
[http://dx.doi.org/10.1507/endocrj.EJ20-0726] [PMID: 33716239]
[37]
Kunavisarut, T. Diagnostic biomarkers of differentiated thyroid cancer. Endocrine, 2013, 44(3), 616-622.
[http://dx.doi.org/10.1007/s12020-013-9974-2] [PMID: 23645523]
[38]
Pak, K.; Suh, S.; Kim, S.J.; Kim, I.J. Prognostic value of genetic mutations in thyroid cancer: A meta-analysis. Thyroid, 2015, 25(1), 63-70.
[http://dx.doi.org/10.1089/thy.2014.0241] [PMID: 25244593]
[39]
Nikiforova, M.N.; Lynch, R.A.; Biddinger, P.W.; Alexander, E.K.; Dorn, G.W., II; Tallini, G.; Kroll, T.G.; Nikiforov, Y.E. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: Evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab., 2003, 88(5), 2318-2326.
[http://dx.doi.org/10.1210/jc.2002-021907] [PMID: 12727991]
[40]
Czarniecka, A.; Oczko-Wojciechowska, M.; Barczyński, M. BRAF V600E mutation in prognostication of Papillary Thyroid Cancer (PTC) recurrence. Gland Surg., 2016, 5(5), 495-505.
[http://dx.doi.org/10.21037/gs.2016.09.09] [PMID: 27867864]
[41]
Haroon Al Rasheed, M.R.; Xu, B. Molecular alterations in thyroid carcinoma. Surg. Pathol. Clin., 2019, 12(4), 921-930.
[http://dx.doi.org/10.1016/j.path.2019.08.002] [PMID: 31672298]
[42]
Zhang, H.; Jiang, J.; He, X.; Zhou, Q. Circ_0002111/miR-134-5p/FSTL1 signal axis regulates tumor progression and glycolytic metabolism in papillary thyroid carcinoma cells. J. Endocrinol. Invest., 2022, 46(4), 713-725.
[http://dx.doi.org/10.1007/s40618-022-01921-4] [PMID: 36227499]
[43]
Zhang, Z.; Wang, W.; Su, Z.; Zhang, J.; Cao, H. Circ_0011058 facilitates proliferation, angiogenesis and radioresistance in papillary thyroid cancer cells by positively regulating YAP1 via acting as miR-335-5p sponge. Cell. Signal., 2021, 88, 110155.
[http://dx.doi.org/10.1016/j.cellsig.2021.110155] [PMID: 34562605]
[44]
Nikiforov, Y.E.; Nikiforova, M.N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol., 2011, 7(10), 569-580.
[http://dx.doi.org/10.1038/nrendo.2011.142] [PMID: 21878896]
[45]
Liu, R.; Xing, M. TERT promoter mutations in thyroid cancer. Endocr. Relat. Cancer, 2016, 23(3), R143-R155.
[http://dx.doi.org/10.1530/ERC-15-0533] [PMID: 26733501]
[46]
Lu, H.; Zhu, C.; Ruan, Y.; Fan, L.; Ruan, Z.; Chen, Q.; Yuan, J.; Xu, Y.; Wang, H.; Wei, Q. hsa-miR-206b involves in the development of papillary thyroid carcinoma via targeting LMX1B. BioMed Res. Int., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/7488708] [PMID: 35342753]
[47]
Wang, W.; Bai, N.; Li, X. Comprehensive analysis of the prognosis and drug sensitivity of differentiation-related lncRNAs in papillary thyroid cancer. Cancers, 2022, 14(5), 1353.
[http://dx.doi.org/10.3390/cancers14051353] [PMID: 35267662]
[48]
Lee, Y.A.; Lee, H.; Im, S.W.; Song, Y.S.; Oh, D.Y.; Kang, H.J.; Won, J.K.; Jung, K.C.; Kwon, D.; Chung, E.J.; Hah, J.H.; Paeng, J.C.; Kim, J.; Choi, J.; Kim, O.H.; Oh, J.M.; Ahn, B.C.; Wirth, L.J.; Shin, C.H.; Kim, J.I.; Park, Y.J. NTRK and RET fusion–directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake. J. Clin. Invest., 2021, 131(18), e144847.
[http://dx.doi.org/10.1172/JCI144847] [PMID: 34237031]
[49]
Hescheler, D.A.; Riemann, B.; Hartmann, M.J.M.; Michel, M.; Faust, M.; Bruns, C.J.; Alakus, H.; Chiapponi, C. Targeted therapy of papillary thyroid cancer: A comprehensive genomic analysis. Front. Endocrinol., 2021, 12, 748941.
[http://dx.doi.org/10.3389/fendo.2021.748941] [PMID: 34630336]
[50]
Aashiq, M.; Silverman, D.A.; Na’ara, S.; Takahashi, H.; Amit, M. Radioiodine-refractory thyroid cancer: Molecular basis of redifferentiation therapies, management, and novel therapies. Cancers, 2019, 11(9), 1382.
[http://dx.doi.org/10.3390/cancers11091382] [PMID: 31533238]
[51]
Guan, Y.; Li, Y.; Yang, Q.B.; Yu, J.; Qiao, H. LncRNA ABCC6P1 promotes proliferation and migration of papillary thyroid cancer cells via Wnt/β-catenin signaling pathway. Ann. Transl. Med., 2021, 9(8), 664.
[http://dx.doi.org/10.21037/atm-21-505] [PMID: 33987362]
[52]
Li, H.; Liu, F.; Wang, X.; Li, M.; Li, Z.; Xie, Y.; Guo, Y. Identification of Hub lncRNAs Along With lncRNA-miRNA-mRNA network for effective diagnosis and prognosis of papillary thyroid cancer. Front. Pharmacol., 2021, 12, 748867.
[http://dx.doi.org/10.3389/fphar.2021.748867] [PMID: 34721037]
[53]
Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.; Chen, L.L.; Yang, L. Complementary sequence-mediated exon circularization. Cell, 2014, 159(1), 134-147.
[http://dx.doi.org/10.1016/j.cell.2014.09.001] [PMID: 25242744]
[54]
Hadjiargyrou, M.; Delihas, N. The intertwining of transposable elements and non-coding RNAs. Int. J. Mol. Sci., 2013, 14(7), 13307-13328.
[http://dx.doi.org/10.3390/ijms140713307] [PMID: 23803660]
[55]
Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; Zhu, P.; Chang, Z.; Wu, Q.; Zhao, Y.; Jia, Y.; Xu, P.; Liu, H.; Shan, G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol., 2015, 22(3), 256-264.
[http://dx.doi.org/10.1038/nsmb.2959] [PMID: 25664725]
[56]
Chen, L.; Wang, C.; Sun, H.; Wang, J.; Liang, Y.; Wang, Y.; Wong, G. The bioinformatics toolbox for circRNA discovery and analysis. Brief. Bioinform., 2021, 22(2), 1706-1728.
[http://dx.doi.org/10.1093/bib/bbaa001] [PMID: 32103237]
[57]
Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2), 141-157.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[58]
Chen, L.L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 475-490.
[http://dx.doi.org/10.1038/s41580-020-0243-y] [PMID: 32366901]
[59]
Xu, X.; Jing, J. Advances on circRNAs contribute to carcinogenesis and progression in papillary thyroid carcinoma. Front. Endocrinol., 2021, 11, 555243.
[http://dx.doi.org/10.3389/fendo.2020.555243] [PMID: 33551989]
[60]
Hu, Z.; Zhao, P.; Zhang, K.; Zang, L.; Liao, H.; Ma, W. Hsa_circ_0011290 regulates proliferation, apoptosis and glycolytic phenotype in papillary thyroid cancer via miR-1252/ FSTL1 signal pathway. Arch. Biochem. Biophys., 2020, 685, 108353.
[http://dx.doi.org/10.1016/j.abb.2020.108353] [PMID: 32234499]
[61]
Lan, X.; Cao, J.; Xu, J.; Chen, C.; Zheng, C.; Wang, J.; Zhu, X.; Zhu, X.; Ge, M. Decreased expression of hsa_circ_0137287 predicts aggressive clinicopathologic characteristics in papillary thyroid carcinoma. J. Clin. Lab. Anal., 2018, 32(8), e22573.
[http://dx.doi.org/10.1002/jcla.22573] [PMID: 29790216]
[62]
Gruner, H.; Cortés-López, M.; Cooper, D.A.; Bauer, M.; Miura, P. CircRNA accumulation in the aging mouse brain. Sci. Rep., 2016, 6(1), 38907.
[http://dx.doi.org/10.1038/srep38907] [PMID: 27958329]
[63]
Ranjan, G.; Sehgal, P.; Sharma, D.; Scaria, V.; Sivasubbu, S. Functional long non-coding and circular RNAs in zebrafish. Brief. Funct. Genomics, 2021, elab014.
[http://dx.doi.org/10.1093/bfgp/elab014] [PMID: 33755040]
[64]
Sharma, D.; Sehgal, P.; Mathew, S.; Vellarikkal, S.K.; Singh, A.R.; Kapoor, S.; Jayarajan, R.; Scaria, V.; Sivasubbu, S. A genome-wide map of circular RNAs in adult zebrafish. Sci. Rep., 2019, 9(1), 3432.
[http://dx.doi.org/10.1038/s41598-019-39977-7] [PMID: 30837568]
[65]
Ye, C.Y.; Chen, L.; Liu, C.; Zhu, Q.H.; Fan, L. Widespread noncoding circular RNA s in plants. New Phytol., 2015, 208(1), 88-95.
[http://dx.doi.org/10.1111/nph.13585] [PMID: 26204923]
[66]
Zhang, Y.; Jia, D.D.; Zhang, Y.F.; Cheng, M.D.; Zhu, W.X.; Li, P.F.; Zhang, Y.F. The emerging function and clinical significance of circRNAs in Thyroid Cancer and Autoimmune Thyroid Diseases. Int. J. Biol. Sci., 2021, 17(7), 1731-1741.
[http://dx.doi.org/10.7150/ijbs.55381] [PMID: 33994857]
[67]
Xu, J.; Zheng, G.; Guo, H.; Meng, K.; Zhang, W.; He, R.; Zheng, C.; Ge, M. Bioinformatics analysis of downstream circRNAs and miRNAs regulated by Runt-related transcription factor 1 in papillary thyroid carcinoma. Gland Surg., 2022, 11(5), 868-881.
[http://dx.doi.org/10.21037/gs-22-219] [PMID: 35694090]
[68]
Wang, H.; Zhang, X.; Li, Y.; Li, Y.; Pang, T. Lidocaine hampers colorectal cancer process via circITFG2/miR-1204/SOCS2 axis. Anticancer Drugs, 2022, 33(3), 235-244.
[http://dx.doi.org/10.1097/CAD.0000000000001091] [PMID: 35045525]
[69]
Nie, C.; Han, J.; Bi, W.; Qiu, Z.; Chen, L.; Yu, J.; Pang, R.; Liu, B.; Sheng, R.; Zhang, J. Circular RNA circ_0000644 promotes papillary thyroid cancer progression via sponging miR-1205 and regulating E2F3 expression. Cell Cycle, 2022, 21(2), 126-139.
[http://dx.doi.org/10.1080/15384101.2021.2012334] [PMID: 34919034]
[70]
Long, M.Y.; Chen, J.W.; Zhu, Y.; Luo, D.Y.; Lin, S.J.; Peng, X.Z.; Tan, L.P.; Li, H.H. Comprehensive circular RNA profiling reveals the regulatory role of circRNA_0007694 in papillary thyroid carcinoma. Am. J. Transl. Res., 2020, 12(4), 1362-1378.
[PMID: 32355548]
[71]
Yao, Y.; Chen, X.; Yang, H.; Chen, W.; Qian, Y.; Yan, Z.; Liao, T.; Yao, W.; Wu, W.; Yu, T.; Chen, Y.; Zhang, Y. Hsa_circ_0058124 promotes papillary thyroid cancer tumorigenesis and invasiveness through the NOTCH3/GATAD2A axis. J. Exp. Clin. Cancer Res., 2019, 38(1), 318.
[http://dx.doi.org/10.1186/s13046-019-1321-x] [PMID: 31324198]
[72]
Peng, X.; Zhu, Y.; Lin, S.; Yu, W.; Zhang, C.; Tan, L.; Long, M.; Luo, D.; Ji, C. Circular RNA_0057209 acts as ceRNA to inhibit thyroid cancer progression by promoting the STK4-mediated hippo pathway via sponging MicroRNA-183. Oxid. Med. Cell. Longev., 2022, 2022, 1-25.
[http://dx.doi.org/10.1155/2022/9974639] [PMID: 35308166]
[73]
Zhou, X.; Jian, W.; Luo, Q.; Zheng, W.; Deng, X.; Wang, X.; Borkhuu, O.; Ji, C.; Li, D.; Fang, L. Circular RNA_0006014 promotes breast cancer progression through sponging miR-885-3p to regulate NTRK2 and PIK3/AKT pathway. Aging, 2022, 14(7), 3105-3128.
[http://dx.doi.org/10.18632/aging.203996] [PMID: 35383130]
[74]
Chen, Y.; Li, C.; Tan, C.; Liu, X. Circular RNAs: A new frontier in the study of human diseases. J. Med. Genet., 2016, 53(6), 359-365.
[http://dx.doi.org/10.1136/jmedgenet-2016-103758] [PMID: 26945092]
[75]
Yang, Y.; Ding, L.; Li, Y.; Xuan, C. Hsa_circ_0039411 promotes tumorigenesis and progression of papillary thyroid cancer by miR-1179/ABCA9 and miR-1205/MTA1 signaling pathways. J. Cell. Physiol., 2020, 235(2), 1321-1329.
[http://dx.doi.org/10.1002/jcp.29048] [PMID: 31270819]
[76]
Liang, M.; Yu, S.; Tang, S.; Bai, L.; Cheng, J.; Gu, Y.; Li, S.; Zheng, X.; Duan, L.; Wang, L.; Zhang, Y.; Huang, X. A panel of plasma exosomal miRNAs as potential biomarkers for differential diagnosis of thyroid nodules. Front. Genet., 2020, 11, 449.
[http://dx.doi.org/10.3389/fgene.2020.00449] [PMID: 32508877]
[77]
Wu, S.C.; Chi, S.Y.; Rau, C.S.; Kuo, P.J.; Huang, L.H.; Wu, Y.C.; Wu, C.J.; Lin, H.P.; Hsieh, C.H. Identification of circulating biomarkers for differentiating patients with papillary thyroid cancers from benign thyroid tumors. J. Endocrinol. Invest., 2021, 44(11), 2375-2386.
[http://dx.doi.org/10.1007/s40618-021-01543-2] [PMID: 33646556]
[78]
Zöphel, K.; Wunderlich, G.; Kotzerke, J. A highly sensitive thyroglobulin assay has superior diagnostic sensitivity for recurrence of differentiated thyroid cancer in patients undergoing TSH suppression. J. Nucl. Med., 2006, 47(3), 552-553.
[PMID: 16513626]
[79]
Grunnet, M.; Sorensen, J.B. Carcinoembryonic Antigen (CEA) as tumor marker in lung cancer. Lung Cancer, 2012, 76(2), 138-143.
[http://dx.doi.org/10.1016/j.lungcan.2011.11.012] [PMID: 22153832]
[80]
Memczak, S.; Papavasileiou, P.; Peters, O.; Rajewsky, N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One, 2015, 10(10), e0141214.
[http://dx.doi.org/10.1371/journal.pone.0141214] [PMID: 26485708]
[81]
Yan, P.; Su, Z.; Zhang, Z.; Gao, T. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR-9-5p and regulating SPAG9 expression. Int. J. Oncol., 2019, 55(5), 988-1002.
[http://dx.doi.org/10.3892/ijo.2019.4868] [PMID: 31485599]
[82]
Liu, J.; Li, H.; Wei, C.; Ding, J.; Lu, J.; Pan, G.; Mao, A. circFAT1(e2) promotes papillary thyroid cancer proliferation, migration, and invasion via the miRNA-873/ZEB1 Axis. Comput. Math. Methods Med., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/1459368] [PMID: 33133224]
[83]
Xue, C.; Cheng, Y.; Wu, J.; Ke, K.; Miao, C.; Chen, E.; Zhang, L. Circular RNA CircPRMT5 accelerates proliferation and invasion of papillary thyroid cancer through regulation of miR-30c/E2F3 Axis. Cancer Manag. Res., 2020, 12, 3285-3291.
[http://dx.doi.org/10.2147/CMAR.S249237] [PMID: 32494192]
[84]
Yang, C.; Wei, Y.; Yu, L.; Xiao, Y. Identification of altered circular RNA expression in serum exosomes from patients with papillary thyroid carcinoma by high-throughput sequencing. Med. Sci. Monit., 2019, 25, 2785-2791.
[http://dx.doi.org/10.12659/MSM.915658] [PMID: 30988274]
[85]
Guo, M.; Sun, Y.; Ding, J.; Li, Y.; Yang, S.; Zhao, Y.; Jin, X.; Li, S.S. Circular RNA profiling reveals a potential role of hsa_circ_IPCEF1 in papillary thyroid carcinoma. Mol. Med. Rep., 2021, 24(2), 603.
[http://dx.doi.org/10.3892/mmr.2021.12241] [PMID: 34165176]
[86]
Peng, N.; Shi, L.; Zhang, Q.; Hu, Y.; Wang, N.; Ye, H. Microarray profiling of circular RNAs in human papillary thyroid carcinoma. PLoS One, 2017, 12(3), e0170287.
[http://dx.doi.org/10.1371/journal.pone.0170287] [PMID: 28288173]
[87]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[88]
Yan, T.; Qiu, W.; Song, J.; Fan, Y.; Yang, Z. ARHGAP36 regulates proliferation and migration in papillary thyroid carcinoma cells. J. Mol. Endocrinol., 2021, 66(1), 1-10.
[http://dx.doi.org/10.1530/JME-20-0230] [PMID: 33112823]
[89]
Meng, K.; Hu, X.; Zheng, G.; Qian, C.; Xin, Y.; Guo, H.; He, R.; Ge, M.; Xu, J. Identification of prognostic biomarkers for papillary thyroid carcinoma by a weighted gene co-expression network analysis. Cancer Med., 2022, 11(9), 2006-2019.
[http://dx.doi.org/10.1002/cam4.4602] [PMID: 35152572]
[90]
Lv, C.; Sun, W.; Huang, J.; Qin, Y.; Ji, X.; Zhang, H. Expression profiles of circular RNAs in human papillary thyroid carcinoma based on RNA deep sequencing. OncoTargets Ther., 2021, 14, 3821-3832.
[http://dx.doi.org/10.2147/OTT.S316292] [PMID: 34188490]
[91]
Du, G.; Ma, R.; Li, H.; He, J.; Feng, K.; Niu, D.; Yin, D. Increased expression of hsa_circ_0002111 and its clinical significance in papillary thyroid cancer. Front. Oncol., 2021, 11, 644011.
[http://dx.doi.org/10.3389/fonc.2021.644011] [PMID: 33718243]
[92]
Yang, D.; Jin, Y.; Cheng, S.; Yang, Y. The interaction between circular RNA hsa_circ_0000285 and miR-599 in thyroid cancer. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(13), 7219.
[PMID: 32706057]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy