Skip to main content

Advertisement

Log in

Differential analysis of core-fucosylated glycoproteomics enabled by single-step truncation of N-glycans

  • Research
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Alpha-1,6 fucosylation of N-glycans (core fucosylation, CF) represents a unique form of N-glycans and is widely involved in disease progression. In order to accurately identify CF glycoproteins, several approaches have been developed based on sequential cleavage with different glycosidases to truncate the N-glycans. Since multi-step sample treatments may introduce quantitation bias and affect the practicality of these approaches in large-scale applications. Here, we systematically evaluated the performance of the single-step treatment of intact glycopeptides by endoglycosidase F3 for CF glycoproteome. The single-step truncation (SST) strategy demonstrated higher quantitative stability and higher efficiency compared with previous approaches. The strategy was further practiced on both cell lines and serum samples. The dysregulation of CF glycopeptides between preoperative and postoperative serum from patients with pancreatic ductal adenocarcinoma was revealed, and the CF modifications of BCHE_N369, CDH5_N112 and SERPIND1_N49 were found to be potential prognostic markers. This study thus provides an efficient solution for large-scale quantitative analysis of the CF glycoproteome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data in this article will be available on reasonable request to the corresponding author.

References

  1. Ohtsubo, K., Marth, J.D.: Glycosylation in cellular mechanisms of health and disease. Cell. 126(5), 855–867 (2006). https://doi.org/10.1016/j.cell.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  2. Moremen, K.W., Tiemeyer, M., Nairn, A.V.: Vertebrate protein glycosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell. Biol. 13(7), 448–462 (2012). https://doi.org/10.1038/nrm3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bastian, K., Scott, E., Elliott, D.J., Munkley, J.: FUT8 Alpha-(1,6)-Fucosyltransferase in Cancer. Int. J. Mol. Sci. 22(1) (2021). https://doi.org/10.3390/ijms22010455

  4. Takahashi, M., Kuroki, Y., Ohtsubo, K., Taniguchi, N.: Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: Their functions and target proteins. Carbohydr. Res. 344(12), 1387–1390 (2009). https://doi.org/10.1016/j.carres.2009.04.031

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, Y.P., Xu, X.Y., Fang, M., Wang, H., You, Q., Yi, C.H., Ji, J., Gu, X., Zhou, P.T., Cheng, C., Gao, C.F.: Decreased core-fucosylation contributes to malignancy in gastric cancer. PLoS One. 9(4) (2014). https://doi.org/10.1371/journal.pone.0094536 e94536

  6. Saldova, R., Fan, Y., Fitzpatrick, J.M., Watson, R.W., Rudd, P.M.: Core fucosylation and alpha2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology. 21(2), 195–205 (2011). https://doi.org/10.1093/glycob/cwq147

    Article  CAS  PubMed  Google Scholar 

  7. Agrawal, P., Fontanals-Cirera, B., Sokolova, E., Jacob, S., Vaiana, C.A., Argibay, D., Davalos, V., McDermott, M., Nayak, S., Darvishian, F., Castillo, M., Ueberheide, B., Osman, I., Fenyö, D., Mahal, L.K., Hernando, E.: A Systems Biology Approach identifies FUT8 as a driver of Melanoma Metastasis. Cancer Cell. 31(6), 804–819e807 (2017). https://doi.org/10.1016/j.ccell.2017.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, J., Yang, W., Hu, Y., Hoti, N., Liu, Y., Shah, P., Sun, S., Clark, D., Thomas, S., Zhang, H.: Site-specific fucosylation analysis identifying Glycoproteins Associated with aggressive prostate Cancer cell lines using Tandem Affinity enrichments of Intact Glycopeptides followed by Mass Spectrometry. Anal. Chem. 89(14), 7623–7630 (2017). https://doi.org/10.1021/acs.analchem.7b01493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Totten, S.M., Adusumilli, R., Kullolli, M., Tanimoto, C., Brooks, J.D., Mallick, P., Pitteri, S.J.: Multi-lectin Affinity Chromatography and quantitative proteomic analysis Reveal Differential Glycoform levels between prostate Cancer and Benign Prostatic Hyperplasia Sera. Sci. Rep. 8(1), 6509 (2018). https://doi.org/10.1038/s41598-018-24270-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, S.J., Zhang, H.: Glycan analysis by reversible reaction to hydrazide beads and mass spectrometry. Anal. Chem. 84(5), 2232–2238 (2012). https://doi.org/10.1021/ac202769k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, J., Wang, F., Chen, R., Cheng, K., Xu, B., Guo, Z., Liang, X., Ye, M., Zou, H.: Centrifugation assisted microreactor enables facile integration of trypsin digestion, hydrophilic interaction chromatography enrichment, and on-column deglycosylation for rapid and sensitive N-glycoproteome analysis. Anal. Chem. 84(11), 5146–5153 (2012). https://doi.org/10.1021/ac3000732

    Article  CAS  PubMed  Google Scholar 

  12. Sun, Z., Fu, B., Wang, G., Zhang, L., Xu, R., Zhang, Y., Lu, H.: High-throughput site-specific N-glycoproteomics reveals glyco-signatures for liver disease diagnosis. Natl. Sci. Rev. 10(1), nwac059 (2023). https://doi.org/10.1093/nsr/nwac059

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Y., Zheng, S., Mao, Y., Cao, W., Zhao, L., Wu, C., Cheng, J., Liu, F., Li, G., Yang, H.: Systems analysis of plasma IgG intact N-glycopeptides from patients with chronic kidney diseases via EThcD-sceHCD-MS/MS. Analyst. 146(23), 7274–7283 (2021). https://doi.org/10.1039/d1an01657a

    Article  CAS  PubMed  Google Scholar 

  14. Cerrato, A., Cavaliere, C., Montone, C.M., Piovesana, S.: New hydrophilic material based on hydrogel polymer for the selective enrichment of intact glycopeptides from serum protein digests. Anal. Chim. Acta. 1245, 340862 (2023). https://doi.org/10.1016/j.aca.2023.340862

    Article  CAS  PubMed  Google Scholar 

  15. Ruhaak, L.R., Xu, G., Li, Q., Goonatilleke, E., Lebrilla, C.B.: Mass Spectrometry approaches to glycomic and glycoproteomic analyses. Chem. Rev. 118(17), 7886–7930 (2018). https://doi.org/10.1021/acs.chemrev.7b00732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Segu, Z.M., Hussein, A., Novotny, M.V., Mechref, Y.: Assigning N-glycosylation sites of glycoproteins using LC/MSMS in conjunction with endo-M/exoglycosidase mixture. J. Proteome Res. 9(7), 3598–3607 (2010). https://doi.org/10.1021/pr100129n

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, W., Cao, W., Huang, J., Wang, H., Wang, J., Xie, C., Yang, P.: PNGase F-mediated incorporation of (18)O into glycans for relative glycan quantitation. Analyst. 140(4), 1082–1089 (2015). https://doi.org/10.1039/c4an02073a

    Article  CAS  PubMed  Google Scholar 

  18. Ma, J., Sanda, M., Wei, R., Zhang, L., Goldman, R.: Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM. J Proteom. 189, 67–74 (2018). https://doi.org/10.1016/j.jprot.2018.02.003

    Article  CAS  Google Scholar 

  19. Lang, R., Leinenbach, A., Karl, J., Swiatek-de Lange, M., Kobold, U., Vogeser, M.: An endoglycosidase-assisted LC-MS/MS-based strategy for the analysis of site-specific core-fucosylation of low-concentrated glycoproteins in human serum using prostate-specific antigen (PSA) as example. Clin. Chim. Acta. 480, 1–8 (2018). https://doi.org/10.1016/j.cca.2018.01.040

    Article  CAS  PubMed  Google Scholar 

  20. Donald, L.J., Spearman, M., Mishra, N., Komatsu, E., Butler, M., Perreault, H.: Mass spectrometric analysis of core fucosylation and sequence variation in a human-camelid monoclonal antibody. Mol. Omics. 16(3), 221–230 (2020). https://doi.org/10.1039/c9mo00168a

    Article  CAS  PubMed  Google Scholar 

  21. Ma, C., Qu, J., Li, X., Zhao, X., Li, L., Xiao, C., Edmunds, G., Gashash, E., Song, J., Wang, P.G.: Improvement of core-fucosylated glycoproteome coverage via alternating HCD and ETD fragmentation. J Proteom. 146, 90–98 (2016). https://doi.org/10.1016/j.jprot.2016.06.003

    Article  CAS  Google Scholar 

  22. Cao, Q., Zhao, X., Zhao, Q., Lv, X., Ma, C., Li, X., Zhao, Y., Peng, B., Ying, W., Qian, X.: Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry. Anal. Chem. 86(14), 6804–6811 (2014). https://doi.org/10.1021/ac501154a

    Article  CAS  PubMed  Google Scholar 

  23. Liu, M.Q., Zeng, W.F., Fang, P., Cao, W.Q., Liu, C., Yan, G.Q., Zhang, Y., Peng, C., Wu, J.Q., Zhang, X.J., Tu, H.J., Chi, H., Sun, R.X., Cao, Y., Dong, M.Q., Jiang, B.Y., Huang, J.M., Shen, H.L., Wong, C.C.L., He, S.M., Yang, P.Y.: pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat. Commun. 8(1), 438 (2017). https://doi.org/10.1038/s41467-017-00535-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, Z., Shen, J., Dong, W., Li, P., Xin, M., Liu, D., Jia, L., Zhu, B., Li, W., Sun, S.: Recognition of Core-Fucosylated Glycopeptides based on the Y1 + Fuc/Y1 ratio in low-energy HCD Spectra. Anal. Chem. (2022). https://doi.org/10.1021/acs.analchem.2c03182

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jia, W., Lu, Z., Fu, Y., Wang, H.P., Wang, L.H., Chi, H., Yuan, Z.F., Zheng, Z.B., Song, L.N., Han, H.H., Liang, Y.M., Wang, J.L., Cai, Y., Zhang, Y.K., Deng, Y.L., Ying, W.T., He, S.M., Qian, X.H.: A strategy for precise and large scale identification of core fucosylated glycoproteins. Mol. Cell. Proteomics. 8(5), 913–923 (2009). https://doi.org/10.1074/mcp.M800504-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, X., Yu, Z., Huang, Y., Liu, C., Wang, M., Li, X., Qian, X., Ying, W.: Integrated Strategy for large-scale investigation on protein core Fucosylation Stoichiometry based on glycan-simplification and paired-peaks-extraction. Anal. Chem. 92(4), 2896–2901 (2020). https://doi.org/10.1021/acs.analchem.9b05276

    Article  CAS  PubMed  Google Scholar 

  27. Yang, X., Leslie, G., Doroszuk, A., Schneider, S., Allen, J., Decker, B., Dunning, A.M., Redman, J., Scarth, J., Plaskocinska, I., Luccarini, C., Shah, M., Pooley, K., Dorling, L., Lee, A., Adank, M.A., Adlard, J., Aittomäki, K., Andrulis, I.L., Ang, P., Barwell, J., Bernstein, J.L., Bobolis, K., Borg, Ã., Blomqvist, C., Claes, K.B.M., Concannon, P., Cuggia, A., Culver, J.O., Damiola, F., de Pauw, A., Diez, O., Dolinsky, J.S., Domchek, S.M., Engel, C., Evans, D.G., Fostira, F., Garber, J., Golmard, L., Goode, E.L., Gruber, S.B., Hahnen, E., Hake, C., Heikkinen, T., Hurley, J.E., Janavicius, R., Kleibl, Z., Kleiblova, P., Konstantopoulou, I., Kvist, A., Laduca, H., Lee, A.S.G., Lesueur, F., Maher, E.R., Mannermaa, A., Manoukian, S., McFarland, R., McKinnon, W., Meindl, A., Metcalfe, K., Mohd Taib, N.A., Moilanen, J., Nathanson, K.L., Neuhausen, S., Ng, P.S., Nguyen-Dumont, T., Nielsen, S.M., Obermair, F., Offit, K., Olopade, O.I., Ottini, L., Penkert, J., Pylkäs, K., Radice, P., Ramus, S.J., Rudaitis, V., Side, L., Silva-Smith, R., Silvestri, V., Skytte, A.B., Slavin, T., Soukupova, J., Tondini, C., Trainer, A.H., Unzeitig, G., Usha, L., van Overeem Hansen, T., Whitworth, J., Wood, M., Yip, C.H., Yoon, S.Y., Yussuf, A., Zogopoulos, G., Goldgar, D., Hopper, J.L., Chenevix-Trench, G., Pharoah, P., George, S.H.L., Balmaña, J., Houdayer, C., James, P., El-Haffaf, Z., Ehrencrona, H., Janatova, M., Peterlongo, P., Nevanlinna, H., Schmutzler, R., Teo, S.H., Robson, M., Pal, T., Couch, F., Weitzel, J.N., Elliott, A., Southey, M., Winqvist, R., Easton, D.F., Foulkes: W.D., Antoniou, A.C., Tischkowitz, M.: Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J Clin Oncol 38(7), 674–685 doi: (2020). https://doi.org/10.1200/jco.19.01907

  28. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2020. CA Cancer J Clin. 70(1), 7–30 (2020). https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  29. Tan, Z., Yin, H., Nie, S., Lin, Z., Zhu, J., Ruffin, M.T., Anderson, M.A., Simeone, D.M., Lubman, D.M.: Large-scale identification of core-fucosylated glycopeptide sites in pancreatic cancer serum using mass spectrometry. J. Proteome Res. 14(4), 1968–1978 (2015). https://doi.org/10.1021/acs.jproteome.5b00068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tada, K., Ohta, M., Hidano, S., Watanabe, K., Hirashita, T., Oshima, Y., Fujnaga, A., Nakanuma, H., Masuda, T., Endo, Y., Takeuchi, Y., Iwashita, Y., Kobayashi, T., Inomata, M.: Fucosyltransferase 8 plays a crucial role in the invasion and metastasis of pancreatic ductal adenocarcinoma. Surg. Today. 50(7), 767–777 (2020). https://doi.org/10.1007/s00595-019-01953-z

    Article  CAS  PubMed  Google Scholar 

  31. Liang, C., Fukuda, T., Isaji, T., Duan, C., Song, W., Wang, Y., Gu, J.: α1,6-Fucosyltransferase contributes to cell migration and proliferation as well as to cancer stemness features in pancreatic carcinoma. Biochim. Biophys. Acta Gen. Subj. 1865(6), 129870 (2021). https://doi.org/10.1016/j.bbagen.2021.129870

    Article  CAS  PubMed  Google Scholar 

  32. Turiák, L., Sugár, S., Ács, A., Tóth, G., Gömöry, Ã., Telekes, A., Vékey, K., Drahos, L.: Site-specific N-glycosylation of HeLa cell glycoproteins. Sci. Rep. 9(1), 14822 (2019). https://doi.org/10.1038/s41598-019-51428-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma, C., Zhang, Q., Qu, J., Zhao, X., Li, X., Liu, Y., Wang, P.G.: A precise approach in large scale core-fucosylated glycoprotein identification with low- and high-normalized collision energy. J Proteom. 114, 61–70 (2015). https://doi.org/10.1016/j.jprot.2014.09.001

    Article  CAS  Google Scholar 

  34. Cao, L., Lih, T.M., Hu, Y., Schnaubelt, M., Chen, S.Y., Zhou, Y., Guo, C., Dong, M., Yang, W., Eguez, R.V., Chen, L., Clark, D.J., Sodhi, A., Li, Q.K., Zhang, H.: Characterization of core fucosylation via sequential enzymatic treatments of intact glycopeptides and mass spectrometry analysis. Nat. Commun. 13(1), 3910 (2022). https://doi.org/10.1038/s41467-022-31472-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H., Li, L., Cheng, K., Ning, Z., Mayne, J., Zhang, X., Walker, K., Chen, R., Twine, S., Li, J., Figeys, D.: Chemoenzymatic method for glycoproteomic N-Glycan type quantitation. Anal. Chem. 92(1), 1618–1627 (2020). https://doi.org/10.1021/acs.analchem.9b04937

    Article  CAS  PubMed  Google Scholar 

  36. Yu, Z., Zhao, X., Tian, F., Zhao, Y., Zhang, Y., Huang, Y., Qian, X., Ying, W.: Sequential fragment ion filtering and endoglycosidase-assisted identification of intact glycopeptides. Anal. Bioanal Chem. 409(12), 3077–3087 (2017). https://doi.org/10.1007/s00216-017-0195-z

    Article  CAS  PubMed  Google Scholar 

  37. Product Information Sheet - E2264.pdf>.:

  38. Kong, R., Qian, X., Ying, W.: Pancreatic cancer cells spectral library by DIA-MS and the phenotype analysis of gemcitabine sensitivity. Sci. Data. 9(1), 283 (2022). https://doi.org/10.1038/s41597-022-01407-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehra, S., Deshpande, N., Nagathihalli, N.: Targeting PI3K pathway in pancreatic ductal adenocarcinoma: Rationale and Progress. Cancers (Basel). 13(17) (2021). https://doi.org/10.3390/cancers13174434

  40. Fu, Y., Yao, N., Ding, D., Zhang, X., Liu, H., Ma, L., Shi, W., Zhu, C., Tang, L.: TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway. J. Cell. Physiol. 235(3), 2761–2775 (2020). https://doi.org/10.1002/jcp.29181

    Article  CAS  PubMed  Google Scholar 

  41. Biankin, A.V., Waddell, N., Kassahn, K.S., Gingras, M.C., Muthuswamy, L.B., Johns, A.L., Miller, D.K., Wilson, P.J., Patch, A.M., Wu, J., Chang, D.K., Cowley, M.J., Gardiner, B.B., Song, S., Harliwong, I., Idrisoglu, S., Nourse, C., Nourbakhsh, E., Manning, S., Wani, S., Gongora, M., Pajic, M., Scarlett, C.J., Gill, A.J., Pinho, A.V., Rooman, I., Anderson, M., Holmes, O., Leonard, C., Taylor, D., Wood, S., Xu, Q., Nones, K., Fink, J.L., Christ, A., Bruxner, T., Cloonan, N., Kolle, G., Newell, F., Pinese, M., Mead, R.S., Humphris, J.L., Kaplan, W., Jones, M.D., Colvin, E.K., Nagrial, A.M., Humphrey, E.S., Chou, A., Chin, V.T., Chantrill, L.A., Mawson, A., Samra, J.S., Kench, J.G., Lovell, J.A., Daly, R.J., Merrett, N.D., Toon, C., Epari, K., Nguyen, N.Q., Barbour, A., Zeps, N., Kakkar, N., Zhao, F., Wu, Y.Q., Wang, M., Muzny, D.M., Fisher, W.E., Brunicardi, F.C., Hodges, S.E., Reid, J.G., Drummond, J., Chang, K., Han, Y., Lewis, L.R., Dinh, H., Buhay, C.J., Beck, T., Timms, L., Sam, M., Begley, K., Brown, A., Pai, D., Panchal, A., Buchner, N., De Borja, R., Denroche, R.E., Yung, C.K., Serra, S., Onetto, N., Mukhopadhyay, D., Tsao, M.S., Shaw, P.A., Petersen, G.M., Gallinger, S., Hruban, R.H., Maitra, A., Iacobuzio-Donahue, C.A., Schulick, R.D., Wolfgang, C.L., Morgan, R.A., Lawlor, R.T., Capelli, P., Corbo, V., Scardoni, M., Tortora, G., Tempero, M.A., Mann, K.M., Jenkins, N.A., Perez-Mancera, P.A., Adams, D.J., Largaespada, D.A., Wessels, L.F., Rust, A.G., Stein, L.D., Tuveson, D.A., Copeland, N.G., Musgrove, E.A., Scarpa, A., Eshleman, J.R., Hudson, T.J., Sutherland, R.L., Wheeler: Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 491(7424), 399–405 (2012). D.A., Pearson, J.V., McPherson, J.D., Gibbs, R.A., Grimmond, S.M https://doi.org/10.1038/nature11547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jurcak, N.R., Rucki, A.A., Muth, S., Thompson, E., Sharma, R., Ding, D., Zhu, Q., Eshleman, J.R., Anders, R.A., Jaffee, E.M., Fujiwara, K., Zheng, L.: Axon Guidance Molecules promote Perineural Invasion and Metastasis of Orthotopic pancreatic tumors in mice. Gastroenterology. 157(3), 838–850e836 (2019). https://doi.org/10.1053/j.gastro.2019.05.065

    Article  CAS  PubMed  Google Scholar 

  43. Müller, M.W., Giese, N.A., Swiercz, J.M., Ceyhan, G.O., Esposito, I., Hinz, U., Büchler, P., Giese, T., Büchler, M.W., Offermanns, S., Friess, H.: Association of axon guidance factor semaphorin 3A with poor outcome in pancreatic cancer. Int. J. Cancer. 121(11), 2421–2433 (2007). https://doi.org/10.1002/ijc.22949

    Article  CAS  PubMed  Google Scholar 

  44. Gao, Y., Liu, X., Li, T., Wei, L., Yang, A., Lu, Y., Zhang, J., Li, L., Wang, S., Yin, F.: Cross-validation of genes potentially associated with overall survival and drug resistance in ovarian cancer. Oncol. Rep. 37(5), 3084–3092 (2017). https://doi.org/10.3892/or.2017.5534

    Article  CAS  PubMed  Google Scholar 

  45. Willis, S., Villalobos, V.M., Gevaert, O., Abramovitz, M., Williams, C., Sikic, B.I., Leyland-Jones, B.: Single gene prognostic biomarkers in ovarian Cancer: A Meta-analysis. PLoS One. 11(2), e0149183 (2016). https://doi.org/10.1371/journal.pone.0149183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rochefort, P., Chabaud, S., Pierga, J.Y., Tredan, O., Brain, E., Bidard, F.C., Schiffler, C., Polena, H., Khalil-Mgharbel, A., Vilgrain, I., Bachelot, T.: Soluble VE-cadherin in metastatic breast cancer: An independent prognostic factor for both progression-free survival and overall survival. Br. J. Cancer. 116(3), 356–361 (2017). https://doi.org/10.1038/bjc.2016.427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Higuchi, K., Inokuchi, M., Takagi, Y., Ishikawa, T., Otsuki, S., Uetake, H., Kojima, K., Kawano, T.: Cadherin 5 expression correlates with poor survival in human gastric cancer. J. Clin. Pathol. 70(3), 217–221 (2017). https://doi.org/10.1136/jclinpath-2016-203640

    Article  CAS  PubMed  Google Scholar 

  48. Huang, H., Zhang, Q., Zhang, Y., Sun, X., Liu, C., Wang, Q., Huang, Y., Li, Q., Wu, Z., Pu, C., Sun, A.: Identification of the level of Exosomal protein by parallel reaction Monitoring Technology in HCC Patients. Int. J. Gen. Med. 15, 7831–7842 (2022). https://doi.org/10.2147/ijgm.S384140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cavalcante Mde, S., Torres-Romero, J.C., Lobo, M.D., Moreno, F.B., Bezerra, L.P., Lima, D.S., Matos, J.C., Rde, M., Monteiro-Moreira, A.: A panel of glycoproteins as candidate biomarkers for early diagnosis and treatment evaluation of B-cell acute lymphoblastic leukemia. Biomark. Res. 4, 1 (2016). https://doi.org/10.1186/s40364-016-0055-6

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32001048).

Author information

Authors and Affiliations

Authors

Contributions

All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Chunyi Hao or Wantao Ying.

Ethics declarations

Ethical approval

The serum samples used in this study were obtained from the Peking University Cancer Hospital in China, with the approval of the Research Ethics Committee.

Competing interests

The authors declare no competing conflicts of interest.

Supporting information

The Supporting Information is available free of charge on the Publications website.

Experimental details and supporting figures and tables(PDF).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1: Table S3. Glycopeptides identified by SST, HEE or HEP methods (XLSX)

Supplementary Material 2: Table S4. The CF glycopeptides differentially expressed between PANC-1 and BxPC-3 (XLSX)

10719_2023_10130_MOESM3_ESM.xlsx

Supplementary Material 3: Table S5. The proteins and site-specific CF glycopeptides differentially expressed between pre- and postoperative serum of patients with PDAC (XLSX)

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, Y., Wu, J., Hou, W. et al. Differential analysis of core-fucosylated glycoproteomics enabled by single-step truncation of N-glycans. Glycoconj J 40, 541–549 (2023). https://doi.org/10.1007/s10719-023-10130-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10130-x

Keywords

Navigation