Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 4, 2023

Planting spacing influences radial variation of basic density and chemical composition of wood from fast growing young Eucalyptus plantations

  • Emanuella Mesquita Pimenta ORCID logo EMAIL logo , Emilly Gracielly dos Santos Brito , Paola Freitas Gomes , Fernanda Maria Guedes Ramalho , Graziela Baptista Vidaurre , Allan Motta Couto , Otávio Camargo Campoe and Paulo Ricardo Gherardi Hein
From the journal Holzforschung

Abstract

Planting spacing plays an important role in tree growth and wood formation. Thus, the aim of this study was to determinate how planting spacing and genetic material affect the radial variation of basic density and chemical composition of wood. The sampling of this study was based on 4 clones of Eucalyptus urophylla × Eucalyptus grandis at 5 years of age planted in four spacings (3 × 1, 3 × 2, 3 × 3 and 3 × 4 m). To determine the basic density (BD), extractive (EXT) and lignin (LT) content, wood discs were removed at breast height, which were sectioned in three radial positions (pith, intermediate and sapwood). The results showed that genetic material, planting spacing and radial position affected the values of BD, EXT and LT content. The BD and EXT content tended to increase with increased planting spacing, while the LT content tended to decrease. In relation to the radial variation, the basic density showed an increase in the pith-bark direction, while the EXT content showed a decrease in this direction. For LT, no significant difference was observed in the pith-bark direction. In general, the largest planting spacings promoted the highest rates of variation of the properties studied.


Corresponding author: Emanuella Mesquita Pimenta, Forest Science Department, Universidade Federal de Lavras, Trevo Rotatório Professor Edmir Sá Santos, 37203-202, Lavras, MG, Brazil; and LD Celulose S.A., Rodovia BR 365 km 574, S/N, 38490-000, Indianópolis, MG, Brazil, E-mail:

Acknowledgments

The authors thank the Wood Science and Technology Graduation Program (PPGCTM) of the Universidade Federal de Lavras (Brazil). Special thanks to Suzano SA Company for providing the wood samples.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

ABNT (2003). Madeira – determinação da densidade básica (NBR 11941). Associação Brasileira de Normas Técnicas, Available at: https://www.abnt.org.br/.Search in Google Scholar

Ara, M., Barbeito, I., Elfving, B., Johansson, U., and Nilsson, U. (2021). Varying rectangular spacing yields no difference in forest growth and external wood quality in coniferous forest plantations. For. Ecol. Manag. 489: 119040, https://doi.org/10.1016/j.foreco.2021.119040.Search in Google Scholar

Arantes, M.D.C., Trugilho, P.F., Lima, J.T., Carneiro, A.C.O., Alves, E., and Guerreiro, M.C. (2011). Longitudinal and radial variation of extractives and total lignin contents of Eucalyptus grandis W.Hill ex Maiden × Eucalyptus urophylla S. T. Blake. Cerne 17: 283–291, https://doi.org/10.1590/s0104-77602011000300001.Search in Google Scholar

ASTM (2013). Standard test method for ethanol-toluene solubility of wood (ASTM D1107-96). Am. Soc. Test. Mater., https://doi.org/10.1520/D1107-96R13.Search in Google Scholar

Balasso, M., Hunt, M., Jacobs, A., and O’Reilly-Waps, J. (2021). Characterisation of wood quality of Eucalyptus nitens plantations and predictive models of density and stiffness with site and tree characteristics. For. Ecol. Manag. 491: 1–14, https://doi.org/10.1016/j.foreco.2021.118992.Search in Google Scholar

Barnett, J.R. and Bonham, V.A. (2004). Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. 79: 461–472, https://doi.org/10.1017/s1464793103006377.Search in Google Scholar PubMed

Binkley, D., Stape, J.L., Ryan, M.G., Barnard, H., and Fownes, J. (2002). Age-related decline in forest ecosystem growth: an individual- tree, stand- structure hypothesis. Ecosystems 5: 58–67, https://doi.org/10.1007/s10021-001-0055-7.Search in Google Scholar

Binkley, D., Campoe, O.C., Alvares, C., Carneiro, R.L., Cegatta, Í., and Stape, J.L. (2017). The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. For. Ecol. Manag. 405: 271–283, https://doi.org/10.1016/j.foreco.2017.09.050.Search in Google Scholar

Brito, A.S., Vidaurre, G.B., Oliveira, J.T.S., Silva, J.G.M., Oliveira, R.F., Júnior, A.F.D., Arantes, M.D.C., Moulin, J.C., Valin, M., Siqueira, L., et al.. (2021). Interaction between planting spacing and wood properties of Eucalyptus clones grown in short rotation. iFor. Biogeosci. For. 14: 12–17, https://doi.org/10.3832/ifor3574-013.Search in Google Scholar

Cardoso, S., Sousa, V.B., Quilho, T., and Pereira, H. (2015). Anatomical variation of teakwood from unmanaged mature plantations in East Timor. J. Wood Sci. 61: 326–333, https://doi.org/10.1007/s10086-015-1474-y.Search in Google Scholar

Cherelli, S.G., Sartori, M.M.P., Próspero, A.G., and Ballarin, A.W. (2018). Heartwood and sapwood in eucalyptus trees: non-conventional approach to wood quality. An Acad. Bras Ciências 90: 425–438, https://doi.org/10.1590/0001-3765201820160195.Search in Google Scholar PubMed

Chies, D. (2005). Influência do espaçamento sobre a qualidade e o rendimento da madeira serrada de Pinus taeda L, Dissertation. Paraná, Universidade Federal do Paraná.Search in Google Scholar

Costa, A.C.S., Leal, C.S., Santos, L.C., Carvalho, A.M.M.L., Oliveira, A.C., and Pereira, B.L.C. (2017). Propriedades da madeira de cerne e alburno de Eucalyptus camaldulensis. Braz. J. Wood Sci. 8: 10–20, https://doi.org/10.12953/2177-6830/rcm.v8n1p10-20.Search in Google Scholar

Costa, S., Lima, E., Santos, R.C.S., Vidaurre, G.B., Castro, R.V.O., Rocha, S.M.G., Carneiro, R.L., Campoe, O.C., Santos, C.P.S., Gomes, I.R.F., et al.. (2020). The effects of contrasting environments on the basic density and mean annual increment of wood from eucalyptus clones. For. Ecol. Manag. 458: 1–10.10.1016/j.foreco.2019.117807Search in Google Scholar

Cutter, B.E., Coggeshall, M.V., Phelps, J.E., and Stokke, D.D. (2004). Impacts of forest management activities on selected hardwood wood quality attributes: a review. Wood Fiber Sci. 36: 84–97.Search in Google Scholar

Erasmus, J., Kunneke, A., Drew, D.M., and Wessels, C.B. (2018). The effect of planting spacing on Pinus patula stem straightness, microfibril angle and wood density. For. Int. J. For. Res. 91: 247–258, https://doi.org/10.1093/forestry/cpy005.Search in Google Scholar

Ferreira, D.F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Rev. Bras. Biom. 37: 529–535, https://doi.org/10.28951/rbb.v37i4.450.Search in Google Scholar

Goldschimid, O. (1971). Ultraviolet spectra. In: Sarkanen, K.V. and Ludwig, C.H. (Eds.), Lignins: occurrence, formation, structure and reactions. J. Wiley, New York, pp. 241–266.Search in Google Scholar

Gomide, J.L. and Demuner, B.J. (1986). Determinação do teor de lignina em material lenhoso: método Klason modificado. O Papel 47: 36–38.Search in Google Scholar

Gonçalves, J.L.M., Stape, J.L., Laclau, J.P., Smethurst, P., and Gava, J.L. (2004). Silvicultural effects on the productivity and wood quality of eucalypt plantations. For. Ecol. Manag. 193: 45–61.10.1016/j.foreco.2004.01.022Search in Google Scholar

IBGE - Instituto Brasileiro de Geografia e Estatística (2019) Mapa de solos do Brasil, Available at: https://geoftp.ibge.gov.br/informacoes_ambientais/pedologia/mapas/brasil/solos.pdf (Accessed 04 October 2019).Search in Google Scholar

Jankowsky, I.P. (1979). Madeira juvenil: formação e aproveitamento industrial. Circular Técnica IPEF, Piracicaba.Search in Google Scholar

Kollman, F.F.P. and Côté, W.A.Jr. (1968). Principles of wood science and technology I: solid wood. Springer-Verlag, Berlin, Heidelberg, New York.10.1007/978-3-642-87928-9Search in Google Scholar

Lasserre, J.-P., Mason, E.G., Watt, M.S., and Moore, J.R. (2009). Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D. Don corewood. For. Ecol. Manag. 258: 1924–1931, https://doi.org/10.1016/j.foreco.2009.07.028.Search in Google Scholar

Malan, F.S. (2005). The effect of planting density on the wood quality of South African-grown Eucalyptus grandis. South. Afr. For. J. 205: 31–37, https://doi.org/10.2989/10295920509505235.Search in Google Scholar

Miranda, I., Tomé, M., and Pereira, H. (2003). The inluence of spacing on wood properties for Eucalyptus globulus Labill pulpwood. Appita J. 56: 140–144.Search in Google Scholar

Morais, M.C. and Pereira, H. (2012). Variation of extractives content in heartwood and sapwood of Eucalyptus globulus trees. Wood Sci. Technol. 46: 709–719, https://doi.org/10.1007/s00226-011-0438-7.Search in Google Scholar

Morais, S.A.L., Nascimento, E.A., and Melo, D.C. (2005). Chemical analysis of Pinus oocarpa wood part I: quantification of macromolecular components and volatile extractives. Rev. Árvore 29: 461–470, https://doi.org/10.1590/s0100-67622005000300014.Search in Google Scholar

Moulin, J.C., Arantes, M.D.C., Vidaurre, G.B., Paes, J.B., and Carneiro, A.C.O. (2015). Efeito do espaçamento, da idade e da irrigação nos componentes químicos da madeira de eucalipto. Rev. Árvore 39: 199–208, https://doi.org/10.1590/0100-67622015000100019.Search in Google Scholar

Pereira, B.L.C., Oliveira, A.C., Carvalho, A.M.M.L., Carneiro, A.C.O., Vital, B.R., and Santos, L.C. (2013). Correlations among the heart/sapwood ratio of eucalyptus wood, yield and charcoal properties. Sci. Forestalis 41: 217–225.Search in Google Scholar

Pereira, H., Graça, J., and Rodrigues, J.C. (2003). Wood quality and its biological basis. In: Barnett, J.R. and Jeronimidis, G. (Eds.). Wood quality and its biological basis. Blackwell Publishing, Oxford, pp. 53–83.Search in Google Scholar

Pérez-Peña, N., Elustondo, D.M., Valenzuela, L., and Ananías, R.A. (2020). Variation of perpendicular compressive strength properties related to anatomical structure and density in Eucalyptus nitens green specimens. Bioresources 15: 987–1000, https://doi.org/10.15376/biores.15.1.987-1000.Search in Google Scholar

Prasetyo, A., Aiso-Sanada, H., Ishiguri, F., Wahyudi, I., Wijaya, I.P.G., Ohshima, J., and Yokota, S. (2019). Variations in anatomical characteristics and predicted paper quality of three Eucalyptus species planted in Indonesia. Wood Sci. Technol. 53: 1409–1423, https://doi.org/10.1007/s00226-019-01137-5.Search in Google Scholar

R Core Team (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Available at: https://www.r-project.org/.Search in Google Scholar

Ramalho, F.M.G., Pimenta, E.M., Goulart, C.P., Almeida, M.N.F., Vidaurre, G.B., and Hein, P.R.G. (2019). Effect of stand density on longitudinal variation of wood and bark growth in fast-growing Eucalyptus plantations. iForest 12: 527–532, https://doi.org/10.3832/ifor3082-012.Search in Google Scholar

Resquin, F., Navarro-Cerrillo, R.M., Carrasco-Letelier, L., and Casnati, C.R. (2019). Influence of contrasting stocking densities on the dynamics of above-ground biomass and wood density of Eucalyptus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. For. Ecol. Manag. 438: 63–74, https://doi.org/10.1016/j.foreco.2019.02.007.Search in Google Scholar

Riki, J.T.B., Sotannde, O.A., and Oluwadare, A.O. (2019). Anatomical and chemical properties of wood and their practical implications in pulp and paper production: a review. J. Res. For. Wildl. Environ. 11: 358–368.Search in Google Scholar

Rocha, M.F.V., Vital, B.R., De Carneiro, A.C.O., Carvalho, A.M.M.L., Cardoso, M.T., and Hein, P.R.G. (2016). Effects of plant spacing on the physical, chemical and energy properties of Eucalyptus wood and bark. J. Trop. For. Sci. 28: 243–248.Search in Google Scholar

Rocha, M.F.V., Veiga, T.R.L.A., Soares, B.C.D., Araújo, A.C.C., Carvalho, A.M.M., and Hein, P.R.G. (2019). Do the growing conditions of trees influence the wood properties? Floresta Ambiente 26: 1–16, https://doi.org/10.1590/2179-8087.035318.Search in Google Scholar

Rocha, S.M.G., Vidaurre, G.B., Pezzopane, J.E.M., Almeida, M.N.F., Carneiro, R.L., Campoe, O.C., Scolforo, H.F., Alvares, C.A., Neves, J.C.L., Xavier, A.C., et al.. (2020). Influence of climatic variations on production, biomass and density of wood in eucalyptus clones of different species. For. Ecol. Manag. 473: 1–10, https://doi.org/10.1016/j.foreco.2020.118290.Search in Google Scholar

Salvo, L., Leandro, L., Contreras, H., Cloutier, A., Elustondo, D.M., and Ananías, R.A. (2017). Radial variation of density and anatomical features of Eucalyptus nitens trees. Wood Fiber Sci. 49: 1–11.Search in Google Scholar

Santos, L.M.H., Almeida, M.N.F., Silva, J.G.M., Vidaurre, G.B., Hein, P.R.G., Silva, G.F., Zanuncio, A.J.V., Fraga Filho, C.V., Campinhos, E.N., Mafia, R.G., et al.. (2021). Variations in heartwood formation and wood density as a function of age and plant spacing in a fast-growing eucalyptus plantation. Holzforschung 75: 979–988, https://doi.org/10.1515/hf-2020-0215.Search in Google Scholar

Soro, A., Lenz, P., Hassegawa, M., Roussel, J.R., Bousquet, J., and Achim, A. (2022). Genetic influence on components of wood density variation in white spruce. Forestry 95: 153–216, https://doi.org/10.1093/forestry/cpab044.Search in Google Scholar

Sseremba, O.E., Mugabi, P., and Banana, A.Y. (2016). Within-tree and tree-age variation of selected anatomical properties of the wood of Ugandan-grown Eucalyptus grandis. For. Prod. J. 66: 433–442, https://doi.org/10.13073/fpj-d-15-00070.Search in Google Scholar

Sseremba, O.E., Mugabi, P., Banana, A.Y., Wessels, B.C., and Plessis, M. (2021). Variation of basic density, calorific value and volumetric shrinkage within tree height and tree age of Ugandan grown Eucalyptus grandis wood. J. For. Res. 32: 503–512, https://doi.org/10.1007/s11676-020-01141-7.Search in Google Scholar

Stape, J.L., Binkley, D., Ryan, M.G., Fonseca, S., Loos, R.A., Takahashi, E.N., Silva, C.R., Silva, S.R., Hakamada, R.E., Ferreira, J.M.D.A., et al.. (2010). The Brazil Eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production. For. Ecol. Manag. 259: 1684–1694, https://doi.org/10.1016/j.foreco.2010.01.012.Search in Google Scholar

Valverde, J.C., Arias, D., Campos, R., Jiménez, L.D., and Morales, J.P. (2022). Effects of planting spacing on chemical, physical and energetic properties of biomass accumulation in a plantation of Eucalyptus tereticornis sm. Cerne 28: 1–8, https://doi.org/10.1590/01047760202228012930.Search in Google Scholar

Zobel, B.J. and Van Buijtenen, J.P. (1989). Wood variation: its causes and control. Springer Verlag, Berlin.10.1007/978-3-642-74069-5Search in Google Scholar

Received: 2023-02-20
Accepted: 2023-06-22
Published Online: 2023-08-04
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2023-0016/html
Scroll to top button