Skip to main content
Log in

Impact of the Shape Factor on Combined Buoyancy and Marangoni Convection in a Hybrid Nanofluid Filled Cylindrical Porous Annulus

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The ongoing research numerically examines the impact of the nanoparticle shape factor on the coupled Marangoni and buoyancy convection in a cylindrical porous annular region saturated with Ag-MgO/water hybrid nanofluid with magnetic effects. The internal wall of the annulus is considered to be hot, while the external wall is believed to be cold. The inner cylinder is fitted with a thin circular heated disc. To solve the non-dimensional governing equations, the finite difference approach with ADI, central differencing, and SOR technique is used. The major goal of the current study is to analyze the impact of the various shape factors on the Marangoni convection, magnetic field and nanoparticle volume fraction in the cylindrical annulus. The current study reveals that the spherical shaped nanoparticle outperforms in all the cases and \(\overline{Nu}\) hikes with the Marangoni number and declines with Hartmann number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data is available within the manuscript.

Abbreviations

A:

Aspect ratio (H/D)

D :

annulus gap (m)

Da :

Darcy number

g :

gravitational acceleration \((m/s^{2})\)

Ha :

Hartmann number

k :

thermal conductivity(W/mk)

K :

Permeability of the porous medium \((m^2)\)

L :

Location of the baffle (h/H)

m :

Sphericity

Ma :

Marangoni number

Nu :

Nusselt number

p :

Pressure \((N/m^{2})\)

Pr :

Prandtl number

rx :

dimensional coordinates

RX :

dimensionless coordinates

\(r_{0}\) :

Radius of the outer cylinder (m)

\(r_{i}\) :

Radius of the inner cylinder (m)

Ra :

Rayleigh number

T :

Dimensional temperature

UV :

Dimensionless velocity components

uv :

Dimensional velocity components (m/s)

\(\alpha\) :

thermal diffusivity \((m^2/s)\)

\(\beta\) :

thermal expansion coefficient \((K^{-1})\)

\(\epsilon\) :

Size of the baffle (l/D)

\(\delta\) :

Porosity of the porous medium \((m^2)\)

\(\eta\) :

Dimensionless vorticity

\(\lambda\) :

Radii ratio \((r_{0}/r_{i})\)

\(\mu\) :

dynamic viscosity (kg/ms)

\(\nu\) :

kinematic viscosity \((m^2/s)\)

\(\Omega\) :

Dimensional vorticity \((s^{-1})\)

\(\phi\) :

Solid volume fraction of nanoparticles

\(\psi\) :

dimensional stream function \((m^2/s^{1})\)

\(\Psi\) :

dimensionless stream function

\(\rho\) :

Density \((kg/m^{3})\)

\(\sigma\) :

Electrical conductivity \((sm^{-1})\)

\(\sigma ^{*}\) :

Surface tension

\(\tau\) :

Time (s)

\(\theta\) :

Dimensionless Temperature

avg :

average

c :

cold wall

f :

Properties associated with fluid

hnf :

Properties associated with hybrid nanofluid

References

  • Abedini, A., Armaghani, T., Chamkha, A.J.: MHD free convection heat transfer of a water-Fe3O4 nanofluid in a baffled C-shaped enclosure. J. Therm. Anal. Calorim. 135, 685–695 (2019)

    Article  Google Scholar 

  • Benkhedda, M., Boufendi, T., Touahri, S.: Laminar mixed convective heat transfer enhancement by using Ag-TiO2-water hybrid Nanofluid in a heated horizontal annulus. Heat Mass Transf. 54, 2799–2814 (2018)

    Article  Google Scholar 

  • Benkhedda, M., Boufendi, T., Tayebi, T., Chamkha, A.J.: Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. J. Therm. Anal. Calorim. 140, 411–425 (2020)

    Article  Google Scholar 

  • Benzema, M., Benkahla, Y.K., Labsi, N., Ouyahia, S.-E., El Ganaoui, M.: Second law analysis of MHD mixed convection heat transfer in a vented irregular cavity filled with Ag-MgO/water hybrid nanofluid. J. Therm. Anal. Calorim. 137, 1113–1132 (2019)

    Article  Google Scholar 

  • De Vahl Davis, G.: Natural convection of air in a square cavity: A bench mark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

  • Dogonchi, A.S., Armaghani, T., Chamkha, A.J., Ganji, D.D.: Natural Convection Analysis in a Cavity with an Inclined Elliptical Heater Subject to Shape Factor of Nanoparticles and Magnetic Field. Arab. J. Sci. Eng. 44, 7919–7931 (2019)

    Article  Google Scholar 

  • Ellahi, R., Hassan, M., Zeeshan, A.: Shape effects of nanosize particles in Cu-H2O nanofluid on entropy generation. Int. J. Heat Mass Transf. 81, 449–456 (2015)

    Article  Google Scholar 

  • Ghadikolaei, S., Yassari, M., Sadeghi, H., Hosseinzadeh, K., Ganji, D.: Investigation on thermophysical properties of Tio2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 322, 428–438 (2017)

    Article  Google Scholar 

  • Gholinia, M., Moosavi, S.A.H.K., Pourfallah, M., Gholinia, S., Ganji, D.D.: A numerical treatment of the TiO 2 /C 2 H 6 O 2 -H 2 O hybrid base nanofluid inside a porous cavity under the impact of shape factor in MHD flow. Int. J. Ambient Energy 42, 1815–1822 (2021)

    Article  Google Scholar 

  • Gillon, P., Homsy, G.M.: Combined thermocapillary buoyancy convection in a cavity: An experimental study. Phys. Fluids 8, 2953–2963 (1996)

    Article  Google Scholar 

  • Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fund. 1(3), 187–191 (1962)

    Article  Google Scholar 

  • Humaira Tasnim, S., Collins, M.R.: Numerical analysis of heat transfer in square cavity with a baffle on the hot wall. Int. Commun. Heat Mass Transf. 31, 639–650 (2004)

  • Li, Y., Yoda, M.: An experimental study of buoyancy-Marangoni convection in confined and volatile binary fluids. Int. J. Heat Mass Transf. 102, 369–380 (2016)

    Article  Google Scholar 

  • Ma, Y., Mohebbi, R., Rashidi, M., Yang, Z., Sheremet, M.A.: Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int. J. Heat Mass Transf. 130, 123–134 (2019)

    Article  Google Scholar 

  • Maxwell, J.C.: A treatise on electricity and magnetism, vol.1. Clarendon press, (1873)

  • Pushpa, B.V., Sankar, M., Mebarek-Oudina, F.: Buoyant Convective Flow and Heat Dissipation of Cu-H 2 O Nanoliquids in an Annulus Through a Thin Baffle. J. Nanofluids 10, 292–304 (2021)

    Article  Google Scholar 

  • Reddy, P.S., Chamkha, A.J.: Soret and Dufour effects on MHD convective flow of Al 2 O 3 -water and TiO 2 -water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol. 27, 1207–1218 (2016)

    Article  Google Scholar 

  • Rudraiah, N., Prasad, V.: Effect of Brinkman boundary layer on the onset of Marangoni convection in a fluid-saturated porous layer. Acta Mech. 127, 235–246 (1998)

    Article  MATH  Google Scholar 

  • Saghir, M., Comi, P., Mehrvar, M.: Effects of interaction between Rayleigh and Marangoni convection in superposed fluid and porous layers. Int. J. Therm. Sci. 41, 207–215 (2002)

    Article  Google Scholar 

  • Saleh, H., Hashim, I.: Buoyant Marangoni convection of nanofluids in square cavity. Appl. Math. Mech. 36, 1169–1184 (2015)

    Article  MathSciNet  Google Scholar 

  • Sankar, M., Venkatachalappa, M., Do, Y.: Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure. Int. J. Heat Fluid Flow 32, 402–412 (2011)

    Article  Google Scholar 

  • Selimefendigil, F.: Natural Convection in a Trapezoidal Cavity with an Inner Conductive Object of Different Shapes and Filled with Nanofluids of Different Nanoparticle Shapes. Iran. J. Sci. Technol. Trans. Mech. Eng. 42, 169–184 (2018)

    Article  Google Scholar 

  • Selimefendigil, F., Oztop, H.F., Abu-Hamdeh, N.: Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2-water nanofluids: Effect of nanoparticle shape. Int. Commun. Heat Mass Transfer 71, 9–19 (2016)

    Article  Google Scholar 

  • Shaiq, S., Maraj, E.N., Iqbal, Z.: A comparative analysis of shape factor and thermophysical properties of electrically conducting nanofluids T iO 2-EG and Cu- EG towards stretching cylinder. Chaos Solit. Fractals 118, 290–299 (2019)

    Article  Google Scholar 

  • Sheikholeslami, M.: Magnetic field influence on CuO-H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int. J. Hydrog. Energy 42, 19611–19621 (2017)

    Article  Google Scholar 

  • Sheikholeslami, M., Sadoughi, M.: Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int. J. Heat Mass Transf. 113, 106–114 (2017)

    Article  Google Scholar 

  • Shliomis, M.I., Smorodin, B.L.: Onset of convection in colloids stratified by gravity. Phys. Rev. E 71, 036312 (2005)

    Article  Google Scholar 

  • Smorodin, B.L., Cherepanov, I.N.: Convection of colloidal suspensions stratified by thermodiffusion and gravity. Eur. Phys. J. E 37, 118 (2014)

    Article  Google Scholar 

  • Timofeeva, E.V., Routbort, J.L., Singh, D.: Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 106, 014304 (2009)

    Article  Google Scholar 

  • Tlili, I., Nabwey, H.A., Samrat, S.P., Sandeep, N.: 3D MHD nonlinear radiative flow of CuO-MgO/methanol hybrid nanofluid beyond an irregular dimension surface with slip effect. Sci. Rep. 10, 9181 (2020)

    Article  Google Scholar 

  • Wilkes, J.O., Churchill, S.W.: The finite-difference computation of natural convection in a rectangular enclosure. AIChE J. 12, 161–166 (1966)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under project No. R-2023-522.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muthtamilselvan.

Ethics declarations

Conflicts of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanimozhi, B., Muthtamilselvan, M. & Alhussain, Z.A. Impact of the Shape Factor on Combined Buoyancy and Marangoni Convection in a Hybrid Nanofluid Filled Cylindrical Porous Annulus. Microgravity Sci. Technol. 35, 41 (2023). https://doi.org/10.1007/s12217-023-10065-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-023-10065-w

Keywords

Navigation