Skip to main content
Log in

Quantum Epistemology and Constructivism

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

Constructivist epistemology posits that all truths are knowable. One might ask to what extent constructivism is compatible with naturalized epistemology and knowledge obtained from inference-making using successful scientific theories. If quantum theory correctly describes the structure of the physical world, and if quantum theoretic inferences about which measurement outcomes will be observed with unit probability count as knowledge, we demonstrate that constructivism cannot be upheld. Our derivation is compatible with both intuitionistic and quantum propositional logic. This result is implied by the Frauchiger-Renner theorem, though it is of independent importance as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Baltag, A., Bezhanishvili, N., Özgün, A., & Smets, S. (2019). A topological approach to full belief. Journal of Philosophical Logic, 48(2), 205–244. https://doi.org/10.1007/s10992-018-9463-4

    Article  Google Scholar 

  2. Baltag, A., Renne, B. (2016). Dynamic Epistemic Logic, The stanford encyclopedia of philosophy (Winter 2016 ed.), ed. Zalta, E.N. Metaphysics Research Lab, Stanford University.

  3. Bassi, A., Lochan, K., Satin, S., Singh, T. P., & Ulbricht, H. (2013). Models of wave-function collapse, underlying theories, and experimental tests. Reviews of Modern Physics, 85(2), 471–527. https://doi.org/10.1103/RevModPhys.85.471

    Article  Google Scholar 

  4. Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1(3), 195–200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

    Article  Google Scholar 

  5. Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of mathematics, 823–843,. https://doi.org/10.2307/1968621

  6. Bjorndahl, A., & Özgün, A. (2020). Logic and topology for knowledge, knowability, and belief. The Review of Symbolic Logic, 13(4), 748–775. https://doi.org/10.1017/S1755020319000509

    Article  Google Scholar 

  7. Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of “Hidden’’ variables. I and II. Physical Review, 85(2), 166–179. https://doi.org/10.1103/physrev.85.166

    Article  Google Scholar 

  8. Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 48(8), 696. https://doi.org/10.1103/PhysRev.48.696

    Article  Google Scholar 

  9. Bong, K. W., Utreras-Alarcón, A., Ghafari, F., Liang, Y. C., Tischler, N., Cavalcanti, E. G., Pryde, G. J., & Wiseman, H. M. (2020). A strong no-go theorem on the Wigner’s friend paradox. Nature Physics, 16(12), 1199–1205. https://doi.org/10.1038/s41567-020-0990-x

    Article  Google Scholar 

  10. Bridges, D., Palmgren, E. (2018). Constructive Mathematics, In The Stanford Encyclopedia of Philosophy (Summer 2018 ed.)., ed. Zalta, E.N. Metaphysics Research Lab, Stanford University.

  11. Brukner, C. (2018). A No-Go Theorem for Observer-Independent Facts. Entropy, 20,. https://doi.org/10.3390/e20050350

  12. Bub, J. (2021). Understanding the Frauchiger-Renner argument. Foundations of Physics, 51(2), 36. https://doi.org/10.1007/s10701-021-00420-5

    Article  Google Scholar 

  13. Callender, C. (2007). The emergence and interpretation of probability in Bohmian mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 38(2), 351–370. https://doi.org/10.1016/j.shpsb.2006.08.004

    Article  Google Scholar 

  14. Colbeck, R., & Renner, R. (2011). No extension of quantum theory can have improved predictive power. Nature Communications, 2(1), 411. https://doi.org/10.1038/ncomms1416

    Article  Google Scholar 

  15. Corti, A., Fano, V., & Tarozzi, G. (2023). A Logico-Epistemic Investigation of Frauchiger and Renner’s Paradox. International Journal of Theoretical Physics, 62(3), 54. https://doi.org/10.1007/s10773-023-05313-z

    Article  Google Scholar 

  16. DeBrota, J. B., Fuchs, C. A., & Schack, R. (2020). Respecting One’s Fellow: QBism’s Analysis of Wigner’s Friend. Foundations of Physics, 1–16,. https://doi.org/10.1007/s10701-020-00369-x

  17. Diósi, L. (1987). A universal master equation for the gravitational violation of quantum mechanics. Physics Letters A, 120(8), 377–381. https://doi.org/10.1016/0375-9601(87)90681-5

    Article  Google Scholar 

  18. DiVidi, D., Solomon, G. (2001). Knowability and intuitionistic logic. Philosophia, 28

  19. Dummett, M. (2000). Elements of Intuitionism (Second ed.). Oxford Logic Guides. Oxford, New York: Oxford University Press.

  20. Dummett, M. (2009). Fitch’s Paradox of Knowability, New essays on the knowability paradox, ed. Salerno, J., 51–52. Oxford University Press. Section: 4. https://doi.org/10.1093/acprof:oso/9780199285495.003.0005.

  21. Edgington, D. (1985). The Paradox of Knowability. Mind, 94(376), 557–568.

    Article  Google Scholar 

  22. Edgington, D. (2010). Possible Knowledge of Unknown Truth. Synthese, 173,. https://doi.org/10.1007/s11229-009-9675-9

  23. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47(10), 777. https://doi.org/10.1103/PhysRev.47.777

    Article  Google Scholar 

  24. Everett, H. (1957). “Relative State” Formulation of Quantum Mechanics. Reviews of Modern Physics, 29(3), 454–462. https://doi.org/10.1103/revmodphys.29.454

  25. Fitch, F. B. (2009). A Logical Analysis of Some Value Concepts, In New essays on the knowability paradox, ed. Salerno, J., 34–41. Oxford University Press. Section: 2. https://doi.org/10.2307/2271594.

  26. Frauchiger, D., & Renner, R. (2018). Quantum theory cannot consistently describe the use of itself. Nature Communications, 9(1), 3711. https://doi.org/10.1038/s41467-018-05739-8

    Article  Google Scholar 

  27. Ghirardi, G. C., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34(2), 470–491. https://doi.org/10.1103/PhysRevD.34.470

    Article  Google Scholar 

  28. Gisin, N. (2021). Indeterminism in physics and intuitionistic mathematics. Synthese, 199(5), 13345–13371. https://doi.org/10.1007/s11229-021-03378-z

    Article  Google Scholar 

  29. Griffiths, R. B. (1984). Consistent histories and the interpretation of quantum mechanics. Journal of Statistical Physics, 36(1), 219–272. https://doi.org/10.1007/BF01015734

    Article  Google Scholar 

  30. Hand, M., J. L. Kvanvig. (1999). Tennant on knowability. Australasian Journal of Philosophy 77(4). https://doi.org/10.1080/00048409912349191.

  31. Healey, R. (2018). Quantum Theory and the Limits of Objectivity. Foundations of Physics, 48, 1568–1589. https://doi.org/10.1007/s10701-018-0216-6

    Article  Google Scholar 

  32. Hintikka, J. (1962). Knowledge and Belief. Ithaca: Cornell University Press.

    Google Scholar 

  33. Kvanvig, J. L. (1995). The Knowability Paradox and the Prospects for Anti-Realism. Noûs, 29(4), 481–500. https://doi.org/10.2307/2216283

    Article  Google Scholar 

  34. Lazarovici, D., Hubert, M. (2019). How Quantum Mechanics can consistently describe the use of itself. Scientific Reports 9(470). https://doi.org/10.1038/s41598-018-37535-1.

  35. Leifer, M. S. (2014). Is the Quantum State Real? An Extended Review of \(\psi \)-ontology Theorems. Quanta 3(1): 67–155. https://doi.org/10.12743/quanta.v3i1.22 .

  36. Lewis, D. (1986). On the Plurality of Worlds. Blackwell.

    Google Scholar 

  37. Losada, M., Laura, R., & Lombardi, O. (2019). Frauchiger-Renner argument and quantum histories. Physical Review A, 100(5), 052114. https://doi.org/10.1103/PhysRevA.100.052114

    Article  Google Scholar 

  38. Mazurek, M. D., Pusey, M. F., Resch, K. J., Spekkens, R. W., (2017). Experimentally bounding deviations from quantum theory in the landscape of generalized probabilistic theories. Published: arXiv:1710.05948

  39. Moore, G. E. (1993). Moore’s Paradox, In G. E. Moore: Selected Writings, ed. Baldwin, T. Routledge. Section: 207–212.

  40. Muciño, R., & Okon, E. (2020). Wigner’s convoluted friends. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 72, 87–90. https://doi.org/10.1016/j.shpsb.2020.07.001

    Article  Google Scholar 

  41. Nielsen, M., & Chuang, I. (2010). Quantum Computing and Quantum Information. Cambridge University Press.

    Google Scholar 

  42. Nurgalieva, N., & del Rio, L. (2019). Inadequacy of Modal Logic in Quantum Settings. EPCTS, 287, 267–297. https://doi.org/10.4204/EPTCS.287.16

    Article  Google Scholar 

  43. Nurgalieva, N., & Renner, R. (2020). Testing quantum theory with thought experiments. Contemporary Physics, 61(3), 193–216. https://doi.org/10.1080/00107514.2021.1880075

    Article  Google Scholar 

  44. Okon, E., & Sudarsky, D. (2014). Benefits of Objective Collapse Models for Cosmology and Quantum Gravity. Foundations of Physics, 44(2), 114–143. https://doi.org/10.1007/s10701-014-9772-6

    Article  Google Scholar 

  45. Omnès, R. (1988). Logical reformulation of quantum mechanics. I. Foundations. Journal of Statistical Physics, 53(3), 893–932. https://doi.org/10.1007/BF01014230

    Article  Google Scholar 

  46. Penrose, R. (1996). On Gravity’s role in Quantum State Reduction. General Relativity and Gravitation, 28(5), 581–600. https://doi.org/10.1007/BF02105068

    Article  Google Scholar 

  47. Percival, P. (1990). Fitch and Intuitionistic Knowability. Analysis 50(3). https://doi.org/10.2307/3328541.

  48. Pusey, M. F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state. Nature Physics, 8(6), 475–478. https://doi.org/10.1038/nphys2309

    Article  Google Scholar 

  49. Restall, G. (2009). Not Every Truth Can Be Known (at least, not all at once), In New essays on the knowability paradox, ed. Salerno, J., 51–52. Oxford University Press. Section: 21. https://doi.org/10.1093/acprof:oso/9780199285495.003.0022.

  50. Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35, 1637–1678. https://doi.org/10.1007/BF02302261

    Article  Google Scholar 

  51. Santo, F. D., & Gisin, N. (2022). The Open Past in an Indeterministic Physics. Foundations of Physics, 53(1), 4. https://doi.org/10.1007/s10701-022-00645-y

    Article  Google Scholar 

  52. Spekkens, R. W. (2007). Evidence for the epistemic view of quantum states: A toy theory. Physical Review A, 75(3), 032110. https://doi.org/10.1103/PhysRevA.75.032110

    Article  Google Scholar 

  53. Stalnaker, R. (2006). On Logics of Knowledge and Belief. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 128(1), 169–199.

    Article  Google Scholar 

  54. Sudbery, A. (2019). The hidden assumptions of Frauchiger and Renner. International Journal of Quantum Foundations, 5, 98–109.

    Google Scholar 

  55. Tennant, N. (1997). The Taming of the True. Oxford University Press.

    Google Scholar 

  56. van Ditmarsch, H., Halpern, J., van der Hoek, W., Kooi, B. (2015). Handbook of Epistemic Logic. College Publications.

  57. van Ditmarsch, H., van Der Hoek, W., Kooi, B. (2007). Dynamic epistemic logic, 337. Springer Science & Business Media.

  58. Von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Number 2. Princeton university press.

  59. Waaijer, M., van Neerven, J. (2021). Relational analysis of the Frauchiger–Renner paradox and interaction-free detection of records from the past. Foundations of Physics 51(45). https://doi.org/10.1007/s10701-021-00413-4.

  60. Wallace, D. (2012). The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford: Oxford University Press.

    Book  Google Scholar 

  61. Williamson, T. (1982). Intutionism Disproved? Analysis, 42(4), 203–207. https://doi.org/10.2307/3327773

    Article  Google Scholar 

  62. Williamson, T. (1987). On the Paradox of Knowability. Mind, 94(382), 256–261.

    Article  Google Scholar 

Download references

Acknowledgements

PF is supported in part by funding from the Social Sciences and Humanities Research Council. NN and LdR acknowledge support from the Swiss National Science Foundation through SNSF project No. \(200021\_188541\) and through the the National Centre of Competence in Research Quantum Science and Technology (QSIT). LdR further acknowledges support from the FQXi grant Consciousness in the Physical World.LdR is grateful for the hospitality of Perimeter Institute where part of this work was carried out. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Colleges and Universities. This project was made possible by a chance encounter between PF and LdR at Café Pamenar in Toronto. We thank Niels Linnemann, Thomas de Saegher, Wayne Myrvold, and Bas van Fraassen, as well as the audiences at the Foundations of Physics meeting in Paris and the CQIQC seminar in Toronto for valuable comments.

Funding

PF is supported in part by funding from the Social Sciences and Humanities Research Council. NN and LdR acknowledge support from the Swiss National Science Foundation through SNSF project No. 200021 188541 and through the the National Centre of Competence in Research Quantum Science and Technology (QSIT). LdR further acknowledges support from the FQXi grant Consciousness in the Physical World.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development of the ideas and arguments presented in this paper. PF and NN wrote early drafts on which LdR provided comments. PF wrote the final draft and derived the proofs of the main results.

Corresponding author

Correspondence to Patrick Fraser.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Ethical Approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Proofs

Appendix A Proofs

We do not assume that \(\mathcal {L}\) satisfies the axioms of classical propositional logic, for we want it also to be compatible with an underlying quantum propositional logic while only allowing for intuitionistically valid deductions. However, we do stipulate that it satisfies the following axiom schemas (whose instances shall collectively be denoted \(\Sigma \)) for all \(\mathcal {L}\)-formulas \(\phi \) and \(\psi \):

  • Double Negation Introduction (DNI): \(\quad \vdash \phi \rightarrow \lnot \lnot \phi \)

  • Triple Negation Elimination (TNE): \(\quad \vdash \lnot \lnot \lnot \phi \rightarrow \lnot \phi \)

  • Conjunction Negation Distribution (CND): \(\quad \vdash (\lnot \lnot \phi \wedge \lnot \lnot \psi )\rightarrow \lnot \lnot (\phi \wedge \psi )\)

  • Conjunction Introduction (CI): \(\quad \{\phi ,\psi \} \vdash \phi \wedge \psi \)

  • Conjunction Elimination (CE): \(\quad \vdash \phi \wedge \psi \rightarrow \phi ,\quad \vdash \phi \wedge \psi \rightarrow \psi \)

  • Contraposition:\(\quad \vdash (\phi \rightarrow \psi )\rightarrow (\lnot \psi \rightarrow \lnot \phi )\)

  • Propositional Identity: \(\quad \vdash \lnot (\phi \wedge \lnot \psi )\rightarrow (\phi \rightarrow \lnot \lnot \psi )\)

These axioms are quite minimal (indeed, we do not posit any modal axioms whatsoever) and insufficient on their own to prove completeness. This is a positive feature of the generality of our analysis. Note that all of these axioms are intuitionistically valid and are valid in quantum propositional logic as well (so they can be used in the proof of our main result while being consistent with a constructivist account of logic). The only rule of inference we shall assume is modus ponens (we do not assume the necessitation rule).

Before proving our main theorem, we prove Theorem 2 (which entails Fitch’s paradox) and several lemmas. Defining \(\vdash \) with respect to \(\Sigma \), Theorem 2 asserts that for any \(\mathcal {L}\)-formula \(\phi \) and agent \(\alpha \in A\), \(\Gamma _\text {Const}\vdash \phi \rightarrow \lnot \lnot K_\alpha \phi \):

Proof

For any \(\mathcal {L}\)-formula \(\phi \) we have:

  1. 1.

    \((\phi \wedge \lnot K_\alpha \phi )\rightarrow \Diamond K_\alpha (\phi \wedge \lnot K_\alpha \phi )\quad \textbf{CONST}.\)

  2. 2.

    \(\quad \lnot \Diamond K_\alpha (\phi \wedge \lnot K_\alpha \phi )\rightarrow \lnot (\phi \wedge \lnot K_\alpha \phi )\quad \text {Contraposition.}\)

  3. 3.

    \(\lnot \Diamond K_\alpha (\phi \wedge \lnot K_\alpha \phi ) \quad \textbf {KCONT}.\)

  4. 4.

    \(\quad \lnot (\phi \wedge \lnot K_\alpha \phi )\quad \text {2, 3, Modus Ponens.}\)

  5. 5.

    \(\quad \lnot (\phi \wedge \lnot K_\alpha \phi )\rightarrow (\phi \rightarrow \lnot \lnot K_\alpha \phi )\quad \text {Propositional Identity.}\)

  6. 6.

    \(\quad \phi \rightarrow \lnot \lnot K_\alpha \phi \quad \text {4, 5, Modus Ponens.}\)

We shall denote by FITCH the set of all instances of \(\phi \rightarrow \lnot \lnot K_\alpha \phi \) for all \(\mathcal {L}\)-formulas \(\phi \) and agents \(\alpha \in A\). We now prove several lemmas, taking \(\phi \) and \(\psi \) to range over all \(\mathcal {L}\)-formulas, and \(\alpha \) and \(\beta \) to range over all agents in A.

Lemma 1

  \(\Gamma _{\text {Const}}\cup \{\lnot K_\alpha \phi \}\vdash \lnot \phi \).

Proof

 

  1. 1.

    \(\quad \lnot K_\alpha \phi \quad \text {Assumption.}\)

  2. 2.

    \(\quad \phi \rightarrow \lnot \lnot K_\alpha \phi \quad {\textbf {FITCH}}~ \text {for }\alpha .\)

  3. 3.

    \(\quad \lnot \lnot \lnot K_\alpha \phi \rightarrow \lnot \phi \quad \text {2, Contraposition.}\)

  4. 4.

    \(\quad \lnot K_\alpha \phi \rightarrow \lnot \lnot \lnot K_\alpha \phi \quad {\textbf {DNI}}.\)

  5. 5.

    \(\quad \lnot \lnot \lnot K_\alpha \phi \quad \text {1, 4, Modus Ponens.}\)

  6. 6.

    \(\quad \lnot \phi \quad \text {3, 5, Modus Ponens.}\)

Lemma 2

  \(\Gamma _{\text {Const}}\cup \{\lnot \lnot K_\beta \phi \}\vdash \lnot \lnot K_\alpha K_\beta \phi \).

Proof

 

  1. 1.

    \(\quad \lnot \lnot K_\beta \phi \quad \text {Assumption.}\)

  2. 2.

    \(\quad K_\beta \phi \rightarrow \lnot \lnot K_\alpha K_\beta \phi \quad {\textbf {FITCH}}~ \text {for }\alpha .\)

  3. 3.

    \(\quad (K_\beta \phi \rightarrow \lnot \lnot K_\alpha K_\beta \phi )\rightarrow (\lnot \lnot \lnot K_\alpha K_\beta \phi \rightarrow \lnot K_\beta \phi ) \quad \text {Contraposition.}\)

  4. 4.

    \(\quad \lnot \lnot \lnot K_\alpha K_\beta \phi \rightarrow \lnot K_\beta \phi \quad \text {2, 3, Modus Ponens.}\)

  5. 5.

    \(\quad (\lnot \lnot \lnot K_\alpha K_\beta \phi \rightarrow \lnot K_\beta \phi )\rightarrow (\lnot \lnot K_\beta \phi \rightarrow \lnot \lnot \lnot \lnot K_\alpha K_\beta \phi ) \quad \text {Contraposition.}\)

  6. 6.

    \(\quad \lnot \lnot K_\beta \phi \rightarrow \lnot \lnot \lnot \lnot K_\alpha K_\beta \phi \quad \text {4, 5, Modus Ponens.}\)

  7. 7.

    \(\quad \lnot \lnot \lnot \lnot K_\alpha K_\beta \phi \quad \text {1, 6, Modus Ponens.}\)

  8. 8.

    \(\quad \lnot \lnot \lnot \lnot K_\alpha K_\beta \phi \rightarrow \lnot \lnot K_\alpha K_\beta \phi \quad {\textbf {TNE}}.\)

  9. 9.

    \(\quad \lnot \lnot K_\alpha K_\beta \phi \quad \text {7, 8, Modus Ponens.}\)

Lemma 3

  \(\Gamma _{\text {Const}}\cup \{(\lnot \lnot K_\alpha \phi )\wedge (\lnot \lnot K_\alpha \psi )\}\vdash \lnot \lnot K_\alpha (\phi \wedge \psi )\).

Proof

 

  1. 1.

    \(\quad (\lnot \lnot K_\alpha \phi )\wedge (\lnot \lnot K_\alpha \psi ) \quad \text {Assumption.}\)

  2. 2.

    \(\quad ((\lnot \lnot K_\alpha \phi )\wedge (\lnot \lnot K_\alpha \psi ))\rightarrow \lnot \lnot (K_\alpha \phi \wedge K_\alpha \psi ) \quad {\textbf {CND}}.\)

  3. 3.

    \(\quad \lnot \lnot (K_\alpha \phi \wedge K_\alpha \psi ) \quad \text {1, 2, Modus Ponens.}\)

  4. 4.

    \(\quad (K_\alpha \phi \wedge K_\alpha \psi )\rightarrow K_\alpha (\phi \wedge \psi ) \quad {\textbf {DIST}}.\)

  5. 5.

    \( \quad ((K_\alpha \phi \wedge K_\alpha \psi )\rightarrow K_\alpha (\phi \wedge \psi )) \quad \text {Contraposition.}\) \( \qquad \qquad \rightarrow ( \lnot K_\alpha (\phi \wedge \psi )\rightarrow \lnot (K_\alpha \phi \wedge K_\alpha \psi ))\)

  6. 6.

    \(\quad \lnot K_\alpha (\phi \wedge \psi )\rightarrow \lnot (K_\alpha \phi \wedge K_\alpha \psi ) \quad \text {4, 5, Modus Ponens.}\)

  7. 7.

    \(\quad (\lnot K_\alpha (\phi \wedge \psi )\rightarrow \lnot (K_\alpha \phi \wedge K_\alpha \psi )) \quad \text {Contraposition.}\) \( \qquad \qquad \rightarrow (\lnot \lnot (K_\alpha \phi \wedge K_\alpha \psi )\rightarrow \lnot \lnot K_\alpha (\phi \wedge \psi ))\)

  8. 8.

    \(\quad \lnot \lnot (K_\alpha \phi \wedge K_\alpha \psi )\rightarrow \lnot \lnot K_\alpha (\phi \wedge \psi ) \quad \text {6, 7, Modus Ponens.}\)

  9. 9.

    \(\quad \lnot \lnot K_\alpha (\phi \wedge \psi ) \quad \text {3, 8, Modus Ponens.}\)

The proof of our main result, Theorem 1, is then as follows.

Proof

We must prove three separate results. First, a counter-instance of EQ is inconsistent with CONST. If we assume that EQ is violated, then there is some agent \(\alpha \in A_{\text {QM}}\) and some quantum proposition \(p\in P_{\text {QM}}\) such that \(\lnot (p\rightarrow \Diamond K_\alpha p)\) (a formula which which we shall denote by \(\lnot {\textbf {EQ}}\)). Letting \(\phi _p:=p\rightarrow \Diamond K_\alpha p\) we have:

  1. 1.

    \(\quad p\rightarrow \Diamond K_\alpha p \quad {\textbf {CONST}}\).

  2. 2.

    \(\quad \lnot (p\rightarrow \Diamond K_\alpha p) \quad \lnot {\textbf {EQ}}\).

  3. 3.

    \(\quad \phi _{p}\wedge \lnot \phi _{p} \quad 1, 2, {\textbf {CI}}\).

Thus, \({\textbf {CONST}}\cup \{\lnot {\textbf {EQ}}\}\vdash \perp \). Next, a counter instance of ES is inconsistent with \(\Gamma ^+_{\text {Const}}\setminus \Gamma _{\text {Const}}\). If we assume that ES is violated, then there is some agent \(\alpha \in A_{\text {QM}}\) and some quantum proposition \(p\in P_{\text {QM}}\) such that \(\lnot \lnot (K_\alpha p\wedge K_\alpha (\lnot p))\) (a formula which we shall denote by \(\lnot {\textbf {ES}}\)). Letting \(\psi _p:=\lnot K_\alpha (p\wedge \lnot p)\), we have:

  1. 1.

    \(\quad \lnot K_\alpha (p\wedge \lnot p) \quad {\textbf {NCK}}.\)

  2. 2.

    \(\quad \lnot \lnot (K_\alpha p\wedge K_\alpha (\lnot p)) \quad \lnot {\textbf {ES}}.\)

  3. 3.

    \(\quad \lnot \lnot K_\alpha (p\wedge \lnot p) \quad 2, {\textbf {DIST}}.\)

  4. 4.

    \(\quad \psi _p\wedge \lnot \psi _p \quad 1, 3, {\textbf {CI}}.\)

Thus, \({\textbf {NCK}}\cup {\textbf {DIST}}\cup \{\lnot {\textbf {ES}}\}\vdash \perp \) (where \(\Gamma ^+_{\text {Const}}\setminus \Gamma _{\text {Const}}={\textbf {NCK}}\cup {\textbf {DIST}}\)). Finally, a counter instance of EC is inconsistent with \(\Gamma ^+_{\text {Const}}\). If we assume that EC is violated, then there are some agents \(\alpha ,\beta \in A_{\text {QM}}\) and some quantum proposition \(p\in P_{\text {QM}}\) such that \(\lnot \lnot (K_\alpha K_\beta p\wedge \lnot K_\alpha p)\) (a formula we shall denote by \(\lnot \)EC). Letting \(\xi _p:=\lnot K_\alpha ((K_\beta p\wedge K_\beta (\lnot p))\wedge \lnot (K_\beta p\wedge K_\beta (\lnot p)))\), we have:

  1. 1.

    \(\quad \lnot \lnot (K_\alpha K_\beta p\wedge \lnot K_\alpha p) \quad \lnot {\textbf {EC}}.\)

  2. 2.

    \(\quad \lnot \lnot (K_\alpha K_\beta p\wedge \lnot K_\alpha p)\rightarrow (\lnot \lnot K_\alpha K_\beta p\wedge \lnot \lnot \lnot K_\alpha p) \quad {\textbf {CND}}.\)

  3. 3.

    \(\quad \lnot \lnot K_\alpha K_\beta p\wedge \lnot \lnot \lnot K_\alpha p \quad 1, 2\), Modus Ponens.

  4. 4.

    \(\quad \lnot \lnot K_\alpha K_\beta p \quad 3, {\textbf {CE}}.\)

  5. 5.

    \(\quad \lnot \lnot \lnot K_\alpha p \quad 3, {\textbf {CE}}.\)

  6. 6.

    \(\quad \lnot \lnot \lnot K_\alpha p\rightarrow \lnot K_\alpha p \quad {\textbf {TNE}}.\)

  7. 7.

    \(\quad \lnot K_\alpha p \quad 5, 6\), Modus Ponens.

  8. 8.

    \(\quad \lnot p\)    7, Lemma 1.

  9. 9.

    \(\quad \lnot p\rightarrow \lnot \lnot K_\beta (\lnot p) \quad {\textbf {FITCH}}~\text {for }\beta .\)

  10. 10.

    \(\quad \lnot \lnot K_\beta (\lnot p) \quad 8, 9\), Modus Ponens.

  11. 11.

    \(\quad \lnot \lnot K_\alpha K_\beta (\lnot p)\)    10, Lemma 2.

  12. 12.

    \(\quad (\lnot \lnot K_\alpha K_\beta p)\wedge (\lnot \lnot K_\alpha K_\beta (\lnot p)) \quad 4, 11, {\textbf {CI}}.\)

  13. 13.

    \(\quad \lnot \lnot K_\alpha (K_\beta p\wedge K_\beta (\lnot p))\)    12, Lemma 3.

  14. 14.

    \(\quad (K_\beta p\wedge K_\beta (\lnot p))\rightarrow K_\beta (p\wedge \lnot p) \quad {\textbf {DIST}}.\)

  15. 15.

    \(\quad ((K_\beta p\wedge K_\beta (\lnot p))\rightarrow K_\beta (p\wedge \lnot p)) \quad \) Contraposition. \(\quad \rightarrow (\lnot K_\beta (p\wedge \lnot p)\rightarrow \lnot (K_\beta p\wedge K_\beta (\lnot p)))\)

  16. 16.

    \(\quad \lnot K_\beta (p\wedge \lnot p)\rightarrow \lnot (K_\beta p\wedge K_\beta (\lnot p)) \quad 14, 15\), Modus Ponens.

  17. 17.

    \(\quad \lnot K_\beta (p\wedge \lnot p) \quad {\textbf {NCK}}.\)

  18. 18.

    \(\quad \lnot (K_\beta p\wedge K_\beta (\lnot p)) \quad 16, 17\), Modus Ponens.

  19. 19.

    \(\quad \lnot (K_\beta p\wedge K_\beta (\lnot p))\rightarrow \lnot \lnot K_\alpha (\lnot (K_\beta p\wedge K_\beta (\lnot p))) \quad {\textbf {FITCH}}~ \text {for }\alpha .\)

  20. 20.

    \(\quad \lnot \lnot K_\alpha (\lnot (K_\beta p\wedge K_\beta (\lnot p))) \quad 18, 19\), Modus Ponens.

  21. 21.

    \(\quad (\lnot \lnot K_\alpha (K_\beta p\wedge K_\beta (\lnot p)))\wedge (\lnot \lnot K_\alpha (\lnot (K_\beta p\wedge K_\beta (\lnot p)))) \quad 13, 20, {\textbf {CI}}.\)

  22. 22.

    \(\quad \lnot \lnot K_\alpha ((K_\beta p\wedge K_\beta (\lnot p))\wedge \lnot (K_\beta p\wedge K_\beta (\lnot p)))\)    21, Lemma 3.

  23. 23.

    \(\quad \lnot K_\alpha ((K_\beta p\wedge K_\beta (\lnot p))\wedge \lnot (K_\beta p\wedge K_\beta (\lnot p))) \quad {\textbf {NCK}}.\)

  24. 24.

    \(\quad \xi _p\wedge \lnot \xi _p \quad 22, 23, {\textbf {CI}}.\)

Thus, \(\Gamma ^+_{\text {Const}}\cup \{\lnot {\textbf {EC}}\}\vdash \perp \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, P., Nurgalieva, N. & del Rio, L. Quantum Epistemology and Constructivism. J Philos Logic 52, 1561–1574 (2023). https://doi.org/10.1007/s10992-023-09717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-023-09717-4

Keywords

Navigation