Skip to main content
Log in

Experimental and numerical investigation on the effect of rotational speed on exit-hole-free friction stir spot welding with consumable pin

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The present work investigates the effect of rotational speed on joint quality during Friction Stir Spot Welding (FSSW) using a consumable pin, where a consumable pin is used with a rigid tool shoulder for welding AA6061-T6 sheets to produce an exit-hole-free FSSW joint. Joint quality was analysed using lap shear test, macrostructure, microstructure and microhardness analysis at five rotational speeds, viz. 360, 462, 557, 900 and 1200 revolutions per minute (RPM). The joint strength increased with increase in rotational speed from 360 RPM to 900 RPM and then decreased with further increase in rotational speed. A 1.7 times increase in joint strength was observed for FSSW at 900 RPM with reference to 360 RPM. As expected, both energy input and temperature increased with rotational speed. The energy input increased by only 27.5% as the rotational speed was increased from 360 to 900 RPM. Finite element (FE) simulations were conducted for validation and study using commercial FE software, DEFORM-3D, to predict temperature distribution, force, torque and material flow. Lap shear test simulations matched with experimental results within reasonable (∼7%) accuracy except for very low rotation cases. However, failure load provided better matching with experimental results when Cockcroft-Latham damage model was used instead of Freudenthal damage model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng: R: Rep 50(1–2):1–78

    Article  Google Scholar 

  2. Huang YX, Han B, Tian Y, Liu HJ, Lv SX, Feng JC, Leng JS, Li Y (2011) New technique of filling friction stir welding. Sci Technol Weld Joining 16(6):497–501

    Article  Google Scholar 

  3. Reimann M, Gartner T, Suhuddin U, Göbel J, dos Santos JF (2016) Keyhole closure using friction spot welding in aluminum alloy 6061–T6. J Mater Process Technol 237:12–18

    Article  Google Scholar 

  4. Xu Z, Li Z, Ji S, Zhang L (2018) Refill friction stir spot welding of 5083-O aluminum alloy. J Mater Sci Technol 34(5):878–885

    Article  Google Scholar 

  5. Allen CD, Arbegast WJ (2005) Evaluation of friction spot welds in aluminum alloys. SAE transactions 114(5):612–618

    Google Scholar 

  6. Uematsu Y, Tokaji K, Tozaki Y, Kurita T, Murata S (2008) Effect of re-filling probe hole on tensile failure and fatigue behaviour of friction stir spot welded joints in Al–Mg–Si alloy. Int J Fatigue 30(10–11):1956–1966

    Article  Google Scholar 

  7. Zhou L, Liu D, Nakata K, Tsumura T, Fujii H, Ikeuchi K, Michishita Y, Fujiya Y, Morimoto M (2012) New technique of self-refilling friction stir welding to repair keyhole. Sci Technol Weld Joining 17(8):649–655

    Article  Google Scholar 

  8. Huang YX, Han B, Lv SX, Feng JC, Liu HJ, Leng JS, Li Y (2012) Interface behaviours and mechanical properties of filling friction stir weld joining AA 2219. Sci Technol Weld Joining 17(3):225–230

    Article  Google Scholar 

  9. Bhardwaj N, Narayanan RG, Dixit US (2022) Exit-hole-free friction stir spot welding of aluminum alloy sheets using a consumable pin. J Mater Eng Perform 32(5):2119–2138

    Article  Google Scholar 

  10. Arora KS, Pandey S, Schaper M, Kumar R (2010) Effect of process parameters on friction stir welding of aluminum alloy 2219-T87. Int J Adv Manuf Technol 50(9–12):941–952

    Article  Google Scholar 

  11. Bhardwaj N, Narayanan RG, Dixit US, Hashmi MSJ (2019) Recent developments in friction stir welding and resulting industrial practices. Adv Mater Process Technol 5:461–496

    Google Scholar 

  12. Hao HL, Ni DR, Huang H, Wang D, Xiao BL, Nie ZR, Ma ZY (2013) Effect of welding parameters on microstructure and mechanical properties of friction stir welded Al–Mg–Er alloy. Mater Sci Eng A 559:889–896

    Article  Google Scholar 

  13. Jambhale S, Kumar S, Kumar S (2015) Effect of process parameters and tool geometries on properties of friction stir spot welds: a review. Univers J Eng Sci 3:6–11

    Article  Google Scholar 

  14. Merzoug M, Mazari M, Berrahal L, Imad A (2010) Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys. Mater Des 31(6):3023–3028

    Article  Google Scholar 

  15. Elangovan K, Balasubramanian V, Valliappan M (2008) Effect of tool pin profile and tool rotational speed on mechanical properties of friction stir welded AA6061 aluminium alloy. Mater Manuf Process 23(3):251–260

    Article  Google Scholar 

  16. Zhang Z, Yang X, Zhang J, Zhou G, Xu X, Zou B (2011) Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater Des 32(8–9):4461–4470

    Article  Google Scholar 

  17. Suryanarayanan R, Sridhar VG (2020) Effect of process parameters in pinless friction stir spot welding of Al 5754-Al 6061 alloys. Metallogr Microstruct Anal 9(2):261–272

    Article  Google Scholar 

  18. Lage SBM, Campanelli LC, de Bribean Guerra AP, Shen J, dos Santos JF, da Silva PSCP, Bolfarini C (2019) A study of the parameters influencing mechanical properties and the fatigue performance of refill friction stir spot welded AlMgSc alloy. Int J Adv Manuf Technol 100(1):101–110

    Article  Google Scholar 

  19. Ferreira AC, Campanelli LC, Suhuddin UFH, de Alcântara NG, Santos D (2020) Investigation of internal defects and premature fracture of dissimilar refill friction stir spot welds of AA5754 and AA6061. Int J Adv Manuf Technol 106(7):3523–3531

    Article  Google Scholar 

  20. Tier MD, Rosendo TS, dos Santos JF, Huber N, Mazzaferro JA, Mazzaferro CP, Strohaecker TR (2013) The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds. J Mater Process Technol 213(6):997–1005

    Article  Google Scholar 

  21. Ahmed MMZ, El-Sayed Seleman MM, Ahmed E, Reyad HA, Alsaleh NA, Albaijan I (2022) A novel friction stir deposition technique to Refill Keyhole of Friction stir Spot Welded AA6082-T6 dissimilar joints of different sheet thicknesses. Materials 15(19):6799

    Article  Google Scholar 

  22. de Castro CC, Plaine AH, de Alcântara NG, dos Santos JF (2018) Taguchi approach for the optimisation of refill friction stir spot welding parameters for AA2198-T8 aluminum alloy. Int J Adv Manuf Technol 99(5):1927–1936

    Article  Google Scholar 

  23. Abbasnejad Dizaji S, Darendeliler H, Kaftanoğlu B (2016) Effect of hardening models on different ductile fracture criteria in sheet metal forming. IntJ Mater Form 9(3):261–267

    Article  MATH  Google Scholar 

  24. Aretz H, Keller S, Vogt R, Engler O (2011) Modelling of ductile failure in aluminium sheet forming simulation. IntJ Mater Form 4(2):163–182

    Article  Google Scholar 

  25. Sinha V, Payton EJ, Gonzales M, Abrahams RA, Song BS (2017) Delineation of prior austenite grain boundaries in a low-alloy high-performance steel. Metallograph Microstruct Anal 6(6):610–618

    Article  Google Scholar 

  26. Buffa G, Hua J, Shivpuri R, Fratini L (2006) Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng: A 419(1–2):381–388

    Article  Google Scholar 

  27. Trimble D, Monaghan J, O’donnell GE (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann 61(1):9–12

    Article  Google Scholar 

  28. Gao Z, Niu JT, Krumphals F, Enzinger N, Mitsche S, Sommitsch C (2013) FE modelling of microstructure evolution during friction stir spot welding in AA6082-T6. Weld World 57(6):895–902

    Article  Google Scholar 

  29. Pashazadeh H, Teimournezhad J, Masoumi A (2014) Numerical investigation on the mechanical, thermal, metallurgical and material flow characteristics in friction stir welding of copper sheets with experimental verification. Mater Des 55:619–632

    Article  Google Scholar 

  30. Asadi P, Besharati Givi MK, Akbari M (2016) Simulation of dynamic recrystallisation process during friction stir welding of AZ91 magnesium alloy. Int J Adv Manuf Technol 83(1):301–311

    Article  Google Scholar 

  31. Jain R, Pal SK, Singh SB (2017) Finite element simulation of temperature and strain distribution during friction stir welding of AA2024 aluminum alloy. J Institution Eng (India): Ser C 98(1):37–43

    Article  Google Scholar 

  32. Asadi P, Mahdavinejad RA, Tutunchilar S (2011) Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Mater Sci Eng: A 528(21):6469–6477

    Article  Google Scholar 

  33. Bhardwaj N, Narayanan RG, Dixit US, Petrov M, Petrov P (2020) An inverse approach towards determination of friction in friction stir spot welding. Procedia Manuf 47:839–846

    Article  Google Scholar 

  34. Freudenthal M (1950) The inelastic behavior of engineering materials and structures. Wiley, New York

    Google Scholar 

  35. Cockroft MG, andLatham DJ (1968) Ductility and the workability of metals. J Inst Met 96:33–39

    Google Scholar 

  36. Eom J, Kim M, Lee S, Ryu H, Joun M (2014) Evaluation of damage models by finite element prediction of fracture in cylindrical tensile test. J Nanosci Nanotechnol 14(10):8019–8023

    Article  Google Scholar 

  37. Heidari A, Ghassemi A, Atrian A (2020) A numerical and experimental investigation of temperature effects on the formability of AA6063 sheets using different ductile fracture criteria. Int J Adv Manuf Technol 106(5):2595–2611

    Article  Google Scholar 

  38. Barik SK, Narayanan RG, Sahoo N (2022) Assessment of stress-strain constitutive models and failure models on the shock tube based impact forming of AA 5052-H32 sheet. J Manuf Process 74:573–591

    Article  Google Scholar 

  39. Beygi R, Akhavan-Safar A, Carbas R, Barbosa AQ, Marques EAS, da Silva LFM (2022) Utilizing a ductile damage criterion for fracture analysis of a dissimilar aluminum/steel joint made by friction stir welding. Eng Fract Mech 274:108775

    Article  Google Scholar 

  40. He Y, Dawson PR, Boyce DE (2008) Modeling damage evolution in friction stir welding process. J Eng Mater Technol 130(2):021006

    Article  Google Scholar 

  41. Rana PK, Narayanan RG, Kailas SV (2018) Effect of rotational speed on friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets. J Mater Process Technol 252:511–523

    Article  Google Scholar 

  42. Wang X, Morisada Y, Fujii H (2020) Flat friction stir spot welding of AZ31B magnesium alloy using double side adjustable tools: microstructure and mechanical properties. Sci Technol Weld Joining 25(8):644–652

    Article  Google Scholar 

  43. Li D, Yang X, Cui L, He F, Zhang X (2015) Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651. J Mater Process Technol 222:391–398

    Article  Google Scholar 

  44. Su P, Gerlich A, North TH, Bendzsak GJ (2006) Energy utilisation and generation during friction stir spot welding. Sci Technol Weld Joining 11(2):163–169

    Article  Google Scholar 

  45. Venukumar S, Yalagi S, Muthukumaran S (2013) Comparison of microstructure and mechanical properties of conventional and refilled friction stir spot welds in AA 6061-T6 using filler plate. Trans Nonferrous Met Soc China 23(10):2833–2842

    Article  Google Scholar 

  46. Cao JY, Wang M, Kong L, Guo LJ (2016) Hook formation and mechanical properties of friction spot welding in alloy 6061-T6. J Mater Process Technol 230:254–262

    Article  Google Scholar 

  47. Dialami N, Chiumenti M, Cervera M, Agelet de Saracibar C, Ponthot JP (2015) Material flow visualization in friction stir welding via particle tracing. Int J Mater Form 8(2):167–181

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Central Instrumentation Facility, Indian Institute of Technology Guwahati, for the support in conducting the tensile tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Dixit.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, N., Narayanan, R.G. & Dixit, U.S. Experimental and numerical investigation on the effect of rotational speed on exit-hole-free friction stir spot welding with consumable pin. Int J Mater Form 16, 54 (2023). https://doi.org/10.1007/s12289-023-01779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-023-01779-8

Keywords

Navigation