Skip to main content

Advertisement

Log in

Inorganic carbon removal from alkaline soils: an underappreciated influence on soil organic carbon measurements in an elevated CO2 experiment

  • Biogeochemistry Letters
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Isolating soil organic carbon (SOC) from soil inorganic carbon (SIC) is necessary to quantify SOC stocks and understanding SOC dynamics. Inorganic acids are commonly used to remove SIC and several methods have been developed to minimize the impacts these acid treatments have on the residual SOC. Negative impacts on the SOC pool, such as underestimating SOC stocks, are caused in part due to differences in the amount and composition of the organic matter pool. The effects of SIC removal on SOC are often ignored within experimental studies based on the assumption that soils from the same site do not differ enough to impact results. However, some experimental treatments, such as elevated atmospheric CO2, change SOC pools in both concentration and composition. Therefore, SIC removal can introduce different biases in control and treatment soils that may differ by method. In this work, we compare two commonly used methods of SIC removal on a set of soil samples from the same elevated CO2 experiment. We use soils from the Nevada Desert Free Air Carbon dioxide Enrichment Facility to quantify how SIC removal with either acid washing or acid fumigation affect SOC in control and elevated CO2 plots. We then use the difference in SOC (%C and δ13C) between methods to infer changes in the SOC pool driven by the elevated CO2 treatment. Our results show that acid washing underestimates SOC relative to fumigation and that this difference is larger in soils from control CO2 plots than elevated CO2 plots. This may suggest that stabilization mechanisms sensitive to acidification, such as calcium bridging, are disrupted under elevated CO2 treatment and therefore are less susceptible to SOC loss during acid washing. Our results present future research avenues for exploring the effects of acidic organic compounds, such as root exudates, on SOC stability in alkaline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study along with all code used for analysis are available on GitHub at https://github.com/kelsey-h-jensen/acidify-aridisols.

References

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by KJ. The first draft of the manuscript was written by KJ and JS commented on previous versions of the manuscript. Both authors approved the final manuscript.

Corresponding author

Correspondence to Kelsey H. Jensen.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: Stephen D. Sebestyen.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, K.H., Sparks, J.P. Inorganic carbon removal from alkaline soils: an underappreciated influence on soil organic carbon measurements in an elevated CO2 experiment. Biogeochemistry 165, 15–27 (2023). https://doi.org/10.1007/s10533-023-01073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-023-01073-4

Keywords

Navigation