Skip to main content
Log in

Galerkin spectral estimation of vortex-dominated wake flows

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We propose a technique for performing spectral (in time) analysis of spatially-resolved flowfield data, without needing any temporal resolution or information. This is achieved by combining projection-based reduced-order modeling with spectral proper orthogonal decomposition. In this method, space-only proper orthogonal decomposition is first performed on velocity data to identify a subspace onto which the known equations of motion are projected, following standard Galerkin projection techniques. The resulting reduced-order model is then utilized to generate time-resolved trajectories of data. Spectral proper orthogonal decomposition (SPOD) is then applied to this model-generated data to obtain a prediction of the spectral content of the system, while predicted SPOD modes can be obtained by lifting back to the original velocity field domain. This method is first demonstrated on a forced, randomly generated linear system, before being applied to study and reconstruct the spectral content of two-dimensional flow over two collinear flat plates perpendicular to an oncoming flow. At the range of Reynolds numbers considered, this configuration features an unsteady wake characterized by the formation and interaction of vortical structures in the wake. Depending on the Reynolds number, the wake can be periodic or feature broadband behavior, making it an insightful test case to assess the performance of the proposed method. In particular, we show that this method can accurately recover the spectral content of periodic, quasi-periodic, and broadband flows without utilizing any temporal information in the original data. To emphasize that temporal resolution is not required, we show that the predictive accuracy of the proposed method is robust to using temporally-subsampled data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Access to datasets presented in this work may be available upon request.

References

  1. Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglam, A.M., Tatarsky, V.I. (eds.) Proceedings of the International Colloquium on the Fine Scale Structure of the Atmosphere and Its Influence on Radio Wave Propagation. Doklady Akademii Nauk, SSSR, Moscow (1967)

    Google Scholar 

  2. Lumley, J.L.: Stochastic Tools in Turbulence, vol 12. Applied Mathematics and Mechanics. Technical report, Pennsylvania State University Park Dept. of Aerospace Engineering (1970)

  3. Sirovich, L.: Turbulence and the dynamics of coherent structures, parts I–III. Q. Appl. Math. 45(3), 561–582 (1987)

    Article  MATH  Google Scholar 

  4. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  5. Rempfer, D.: On low-dimensional Galerkin models for fluid flow. Theor. Comput. Fluid Dyn. 14(2), 75–88 (2000)

    Article  MATH  Google Scholar 

  6. Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rempfer, D., Fasel, H.F.: Dynamics of three-dimensional coherent structures in a flat-plate boundary layer. J. Fluid Mech. 275, 257–283 (1994)

    Article  Google Scholar 

  8. Moehlis, J., Smith, T., Holmes, P., Faisst, H.: Models for turbulent plane Couette flow using the proper orthogonal decomposition. Phys. Fluids (1994-present) 14(7), 2493–2507 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Smith, T.R., Moehlis, J., Holmes, P.: Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dyn. 41(1–3), 275–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borggaard, J., Duggleby, A., Hay, A., Iliescu, T., Wang, Z.: Reduced-order modeling of turbulent flows. In: Proceedings of MTNS (2008)

  11. Podvin, B.: A proper-orthogonal-decomposition-based model for the wall layer of a turbulent channel flow. Phys. Fluids (1994-present) 21(1), 015111 (2009)

    Article  MATH  Google Scholar 

  12. Deane, A., Kevrekidis, I., Karniadakis, G.E., Orszag, S.: Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids A Fluid Dyn. (1989–1993) 3(10), 2337–2354 (1991)

    Article  MATH  Google Scholar 

  13. Noack, B.R., Eckelmann, H.: A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297–330 (1994)

    Article  MATH  Google Scholar 

  14. Noack, B.R., Afanasiev, K., Morzynski, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rowley, C.W., Colonius, T., Murray, R.M.: Dynamical models for control of cavity oscillations. AIAA Pap. 2126(2001), 2126–2134 (2001)

    Google Scholar 

  16. Rowley, C.W., Williams, D.R.: Dynamics and control of high-Reynolds-number flow over open cavities. Annu. Rev. Fluid Mech. 38, 251–276 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rajaee, M., Karlsson, S.K., Sirovich, L.: Low-dimensional description of free-shear-flow coherent structures and their dynamical behaviour. J. Fluid Mech. 258, 1–29 (1994)

    Article  MATH  Google Scholar 

  18. Ukeiley, L., Cordier, L., Manceau, R., Delville, J., Glauser, M., Bonnet, J.: Examination of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model. J. Fluid Mech. 441, 67–108 (2001)

    Article  MATH  Google Scholar 

  19. Balajewicz, M.J., Dowell, E.H., Noack, B.R.: Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation. J. Fluid Mech. 729, 285–308 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Östh, J., Noack, B.R., Krajnović, S., Barros, D., Borée, J.: On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body. J. Fluid Mech. 747, 518–544 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Comput. Methods Appl. Mech. Eng. 237, 10–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Noack, B.R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P., Tadmor, G.: A finite-time thermodynamics of unsteady fluid flows. J. Non Equilib. Thermodyn. 33(2), 103–148 (2008)

    Article  MATH  Google Scholar 

  23. Callaham, J.L., Loiseau, J.-C., Brunton, S.L.: Multiscale model reduction for incompressible flows (2022). arXiv preprint arXiv:2206.13205

  24. Balajewicz, M., Tezaur, I., Dowell, E.: Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier–Stokes equations (2015). arXiv preprint arXiv:1504.06661

  25. Cordier, L., Noack, B.R., Tissot, G., Lehnasch, G., Delville, J., Balajewicz, M., Daviller, G., Niven, R.K.: Identification strategies for model-based control. Exp. Fluids 54(8), 1–21 (2013)

    Article  Google Scholar 

  26. Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86(2), 155–181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The gnat method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

  29. Rowley, C.W.: Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15(3), 997–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Glauser, M.N., Leib, S.J., George, W.K.: Coherent structures in the axisymmetric turbulent jet mixing layer. In: Turbulent Shear Flows 5, pp. 134–145. Springer, Berlin, Heidelberg (1987)

  31. Picard, C., Delville, J.: Pressure velocity coupling in a subsonic round jet. Int. J. Heat Fluid Flow 21(3), 359–364 (2000)

    Article  Google Scholar 

  32. Towne, A., Schmidt, O.T., Colonius, T.: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schmidt, O.T., Colonius, T.: Guide to spectral proper orthogonal decomposition. AIAA J. 58(3), 1023–1033 (2020)

    Article  Google Scholar 

  34. Schmid, P.J., Sesterhenn, J.: Dynamic mode decomposition of numerical and experimental data. In: 61st Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, San Antonio (2008)

  35. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641(1), 115–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22(6), 887–915 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Guéniat, F., Mathelin, L., Pastur, L.R.: A dynamic mode decomposition approach for large and arbitrarily sampled systems. Phys. Fluids 27(2), 025113 (2015)

    Article  Google Scholar 

  39. Leroux, R., Cordier, L.: Dynamic mode decomposition for non-uniformly sampled data. Exp. Fluids 57(5), 94 (2016)

    Article  Google Scholar 

  40. Askham, T., Kutz, J.N.: Variable projection methods for an optimized dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 17(1), 380–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tu, J.H., Rowley, C.W., Kutz, J.N., Shang, J.K.: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data. Exp. Fluids 55(9), 1–13 (2014)

    Article  Google Scholar 

  43. Nyquist, H.: Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928)

    Article  Google Scholar 

  44. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  45. Tu, J.H., Griffin, J., Hart, A., Rowley, C.W., Cattafesta, L.N., III., Ukeiley, L.S.: Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic estimation of velocity fields. Exp. Fluids 54(2), 1–20 (2013)

    Article  Google Scholar 

  46. Zhang, Y., Cattafesta, L.N., Ukeiley, L.: Spectral analysis modal methods (SAMMs) using non-time-resolved PIV. Exp. Fluids 61(11), 1–12 (2020)

    Article  Google Scholar 

  47. Tinney, C., Coiffet, F., Delville, J., Hall, A., Jordan, P., Glauser, M.: On spectral linear stochastic estimation. Exp. Fluids 41(5), 763–775 (2006)

    Article  Google Scholar 

  48. Everson, R., Sirovich, L.: Karhunen–Loeve procedure for gappy data. JOSA A 12(8), 1657–1664 (1995)

    Article  Google Scholar 

  49. Bui-Thanh, T., Damodaran, M., Willcox, K.: Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics. In: 21st AIAA Applied Aerodynamics Conference, p. 4213 (2003)

  50. Venturi, D., Karniadakis, G.E.: Gappy data and reconstruction procedures for flow past a cylinder. J. Fluid Mech. 519, 315–336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Willcox, K.: Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. Fluids 35(2), 208–226 (2006)

    Article  MATH  Google Scholar 

  52. Nekkanti, A., Schmidt, O.T.: Gappy spectral proper orthogonal decomposition. J. Comput. Phys. 478, 111950 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  53. Krishna, C.V., Wang, M., Hemati, M.S., Luhar, M.: Reconstructing the time evolution of wall-bounded turbulent flows from non-time-resolved PIV measurements. Phys. Rev. Fluids 5(5), 054604 (2020)

    Article  Google Scholar 

  54. Wang, M., Krishna, C.V., Luhar, M., Hemati, M.S.: Model-based multi-sensor fusion for reconstructing wall-bounded turbulence. Theor. Comput. Fluid Dyn. 35(5), 683–707 (2021)

    Article  MathSciNet  Google Scholar 

  55. Chu, T., Schmidt, O.T.: A stochastic Spod–Galerkin model for broadband turbulent flows. Theor. Comput. Fluid Dyn. 35(6), 759–782 (2021)

    Article  MathSciNet  Google Scholar 

  56. Towne, A.: Space–time Galerkin projection via spectral proper orthogonal decomposition and resolvent modes. In: AIAA Scitech 2021 Forum, p. 1676 (2021)

  57. Sohankar, A.: Flow over a bluff body from moderate to high Reynolds numbers using large eddy simulation. Comput. Fluids 35(10), 1154–1168 (2006)

    Article  MATH  Google Scholar 

  58. Gao, N., Niu, J., Perino, M., Heiselberg, P.: The airborne transmission of infection between flats in high-rise residential buildings: tracer gas simulation. Build. Environ. 43(11), 1805–1817 (2008)

    Article  Google Scholar 

  59. Williamson, C.: Evolution of a single wake behind a pair of bluff bodies. J. Fluid Mech. 159, 1–18 (1985)

    Article  Google Scholar 

  60. Supradeepan, C., Roy, A.: Analysis of flow over two side by side cylinders for different gaps at low Reynolds number: a numerical approach. Phys. Fluids 26(6), 063602 (2014)

    Article  Google Scholar 

  61. Bai, X.-D., Zhang, W., Guo, A.-X., Wang, Y.: The flip-flopping wake pattern behind two side-by-side circular cylinders: a global stability analysis. Phys. Fluids 28(4), 044102 (2016)

    Article  Google Scholar 

  62. Alam, M.M., Moriya, M., Sakamoto, H.: Aerodynamic characteristics of two side-by-side circular cylinders and application of wavelet analysis on the switching phenomenon. J. Fluids Struct. 18(3–4), 325–346 (2003)

    Article  Google Scholar 

  63. Kang, S.: Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Phys. Fluids 15(9), 2486–2498 (2003)

    Article  MATH  Google Scholar 

  64. Zhou, Y., Alam, M.M.: Wake of two interacting circular cylinders: a review. Int. J. Heat Fluid Flow 62, 510–537 (2016)

    Article  Google Scholar 

  65. Guillaume, D., LaRue, J.: Investigation of the flopping regime of two-, three-, and four-plate arrays. J. Fluids Eng. 122(4), 677–682 (2000)

    Article  Google Scholar 

  66. Miau, J.-J., Wang, H., Chou, J.: Flopping phenomenon of flow behind two plates placed side-by-side normal to the flow direction. Fluid Dyn. Res. 17(6), 311 (1996)

    Article  Google Scholar 

  67. Deng, N., Noack, B.R., Morzyński, M., Pastur, L.R.: Low-order model for successive bifurcations of the fluidic pinball. J. Fluid Mech. 884, A37 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  68. Deng, N., Noack, B.R., Morzyński, M., Pastur, L.R.: Cluster-based hierarchical network model of the fluidic pinball–cartographing transient and post-transient, multi-frequency, multi-attractor behaviour. J. Fluid Mech. 934, A24 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  69. Maceda, G.Y.C., Li, Y., Lusseyran, F., Morzyński, M., Noack, B.R.: Stabilization of the fluidic pinball with gradient-enriched machine learning control. J. Fluid Mech. 917, A42 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  70. Schmidt, O.T., Towne, A.: An efficient streaming algorithm for spectral proper orthogonal decomposition. Comput. Phys. Commun. 237, 98–109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  71. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)

    Article  Google Scholar 

  72. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  73. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  74. Taira, K., Colonius, T.: The immersed boundary method: a projection approach. J. Comput. Phys. 225(2), 2118–2137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  75. Colonius, T., Taira, K.: A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Comput. Methods Appl. Mech. Eng. 197(25–28), 2131–2146 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  76. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  77. Temam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (ii). Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Article  MATH  Google Scholar 

  78. Brunton, S.L., Rowley, C.W., Williams, D.R.: Reduced-order unsteady aerodynamic models at low Reynolds numbers. J. Fluid Mech. 724, 203–233 (2013)

    Article  MATH  Google Scholar 

  79. Brunton, S.L., Dawson, S.T.M., Rowley, C.W.: State-space model identification and feedback control of unsteady aerodynamic forces. J. Fluids Struct. 50, 253–270 (2014)

    Article  Google Scholar 

  80. Dawson, S.T.M., Hemati, M., Floryan, D.C., Rowley, C.W.: Lift enhancement of high angle of attack airfoils using periodic pitching. In: 54th AIAA Aerospace Sciences Meeting, p. 2069 (2016)

  81. Dawson, S.T.M.: Reduced-order modeling of fluids systems, with applications in unsteady aerodynamics. PhD thesis, Princeton University (2017)

  82. Almashjary, A.N.: Reduced-order modeling of unsteady flow over two collinear plates at low Reynolds numbers. Master’s thesis, Illinois Institute of Technology (2021)

  83. Cardinale, C., Brunton, S., Colonius, T.: Spectral Proper Orthogonal Decomposition via Dynamic Mode Decomposition for Non-sequential Pairwise Data. Bulletin of the American Physical Society, College Park (2022)

    Google Scholar 

  84. Schmidt, O.T.: Spectral proper orthogonal decomposition using multitaper estimates. Theor. Comput. Fluid Dyn. 36(5), 741–754 (2022)

    Article  MathSciNet  Google Scholar 

  85. Karban, U., Martini, E., Jordan, P., Brès, G.A., Towne, A.: Solutions to aliasing in time-resolved flow data. Theor. Comput. Fluid Dyn. 36(6), 887–914 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support for this work from the the Achievement Rewards for College Scientists Foundation, Inc.’s Scholar Illinois Chapter, and the Illinois Space Grant Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine J. Asztalos.

Ethics declarations

Conflict of interest

The authors are not aware of any biases or conflict of interest that might be interpreted as affecting the objectivity of this work.

Ethical approval

Not applicable.

Additional information

Communicated by Ashok Gopalarathnam.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asztalos, K.J., Almashjary, A. & Dawson, S.T.M. Galerkin spectral estimation of vortex-dominated wake flows. Theor. Comput. Fluid Dyn. (2023). https://doi.org/10.1007/s00162-023-00670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00162-023-00670-1

Keywords

Navigation