Skip to main content

Advertisement

Log in

The Effects of Long-term, Low-dose β-N-methylamino-l-alanine (BMAA) Exposures in Adult SODG93R Transgenic Zebrafish

  • Research
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

A Correction to this article was published on 24 August 2023

This article has been updated

Abstract

β-N-Methylamino-l-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria, which has been implicated in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). It is postulated that chronic exposure to BMAA can lead to formation of protein aggregates, oxidative stress, and/or excitotoxicity, which are mechanisms involved in the etiology of ALS. While specific genetic mutations are identified in some instances of ALS, it is likely that a combination of genetic and environmental factors, such as exposure to the neurotoxin BMAA, contributes to disease. We used a transgenic zebrafish with an ALS-associated mutation, compared with wild-type fish to explore the potential neurotoxic effects of BMAA through chronic long-term exposures. While our results revealed low concentrations of BMAA in the brains of exposed fish, we found no evidence of decreased swim performance or behavioral differences that might be reflective of neurodegenerative disease. Further research is needed to determine if chronic BMAA exposure in adult zebrafish is a suitable model to study neurodegenerative disease initiation and/or progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Contact corresponding author for access to data and materials.

Change history

References

  • Ackermann GE, Paw BH (2003) Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front Biosci 8:1227–1253

    Article  Google Scholar 

  • Andersson M, Karlsson O, Bergström U, Brittebo EB, Brandt I (2013) Maternal Transfer of the Cyanobacterial Neurotoxin β-N-Methylamino-L-Alanine (BMAA) via Milk to Suckling Offspring. PLoS One 8

  • Andersson M, Karlsson O, Brandt I (2018) The environmental neurotoxin β-N-methylamino-L-alanine (L-BMAA) is deposited into birds’ eggs. Ecotoxicol Environ Saf 147:720–724

    Article  CAS  PubMed  Google Scholar 

  • Babin PJ, Goizet C, Raldúa D (2014) Zebrafish models of human motor neuron diseases: Advantages and limitations. Prog Neurobiol 118:36–58

    Article  CAS  PubMed  Google Scholar 

  • Banack SA (2021) Second Laboratory Validation of β-N-Methylamino-L-Alanine, N-(2aminoethyl)Glycine, and 2,4-Diaminobuytric Acid by Ultra-Performance Liquid Chromatography and Tandem Mass Spectrometry. Neurotox Res 39:107–116

    Article  CAS  PubMed  Google Scholar 

  • Banack SA, Murch SJ, Cox PA (2006) Neurotoxic flying foxes as dietary items for the Chamorro people. Marianas Islands J Ethnopharmacol 106:97–104

    Article  PubMed  Google Scholar 

  • Baumgart F, Rodríguez-Crespo I (2008) D-Amino acids in the brain: the biochemistry of brain serine racemase. FEBS J 275:3538–3545

    Article  CAS  PubMed  Google Scholar 

  • Beri J, Nash T, Martin RM, Bereman MS (2017) Exposure to BMAA mirrors molecular processes linked to neurodegenerative disease. Proteomics 17:17–18

    Article  Google Scholar 

  • Brand LE, Pablo J, Compton A, Hammerschlag N, Mash DC (2010) Cyanobacterial blooms and the occurrence of the neurotoxin, beta-N-methylamino-l-alanine (BMAA), in South Florida aquatic food webs. Harmful Algae 9:620–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cachat J et al (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5:1786–1799

    Article  CAS  PubMed  Google Scholar 

  • Caller TA et al (2009) A cluster of amyotrophic lateral sclerosis in New Hampshire: a possible role for toxic cyanobacteria blooms. Amyotroph Lateral Scler 10:101–108

    Article  CAS  PubMed  Google Scholar 

  • Caller T, Henegan P, Stommel E (2018) The Potential Role of BMAA in Neurodegeneration. 222–226. https://doi.org/10.1007/s12640-017-9752-7

  • Chiu AS et al (2012) Excitotoxic potential of the cyanotoxin β-methyl-amino-l-alanine (BMAA) in primary human neurons. Toxicon 60:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Chiu AS, Gehringer MM, Welch JH, Neilan BA (2011) Does alpha-amino-beta-methylaminopropionic acid (BMAA) play a role in neurodegeneration? Int J Environ Res Public Health 8:3728–3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen SA (2012) Analytical techniques for the detection of a-amino-b-methylaminopropionic acid. Analyst 137:1991–2005

    Article  CAS  PubMed  Google Scholar 

  • Cox PA et al (2009) Cyanobacteria and BMAA exposure from desert dust: A possible link to sporadic ALS among Gulf War veterans. Amyotroph Lateral Scler 10:109–117

    Article  CAS  PubMed  Google Scholar 

  • Cox PA, Banack SA, Murch SJ (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc Natl Acad Sci 100:13380–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox PA, Davis DA, Mash DC, Metcalf JS, Banack SA (2016) Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc r Soc B Biol Sci 283:1–10

    Google Scholar 

  • Davis DA et al (2019) Cyanobacterial neurotoxin BMAA and brain pathology in stranded dolphins. PLoS ONE 14:1–18

    Article  Google Scholar 

  • Davis DA et al (2020) L -Serine Reduces Spinal Cord Pathology in a Vervet Model of Preclinical ALS / MND. J Neuropathol Exp Neurol 1–14

  • Duncan MW et al (1991) 2-Amino-3-(Methylamino)-Propanoic Acid (BMAA) Pharmacokinetics and Blood-Brain Barrier Permeability in the Rat. J Pharmacol Exp Ther 258:27–35

    CAS  PubMed  Google Scholar 

  • Dunlop RA, Cox PA, Banack SA, Rodgers KJ (2013) The Non-Protein Amino Acid BMAA Is Misincorporated into Human Proteins in Place of l-Serine Causing Protein Misfolding and Aggregation. PLoS One 8

  • Dunlop DS, Neidle A (2005) Regulation of serine racemase activity by amino acids. Mol Brain Res 133:208–214

    Article  CAS  PubMed  Google Scholar 

  • Eichler EE (2019) Genetic Variation, Comparative Genomics, and the Diagnosis of Disease. N Engl J Med 381:64–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engskog MKR et al (2013) The cyanobacterial amino acid β-N-methylamino-l-alanine perturbs the intermediary metabolism in neonatal rats. Toxicology 312:6–11

    Article  CAS  PubMed  Google Scholar 

  • Frøyset AK, Khan EA, Fladmark KE (2016) Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA). Sci Rep 6:29631

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Kiselova N, Rosén J, Ilag LL (2015) Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets. Sci Rep 4:6931

    Article  Google Scholar 

  • Karamyan VT, Speth RC (2008) Animal models of BMAA neurotoxicity: A critical review. Life Sci 82:233–246

    Article  CAS  PubMed  Google Scholar 

  • Karlsson O et al (2012) Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus. Toxicol Sci 130:391–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson O, Lindquist NG, Brittebo EB, Roman E (2009a) Selective brain uptake and behavioral effects of the cyanobacterial toxin BMAA (β-N-Methylamino-L-alanine) following neonatal administration to rodents. Toxicol Sci 109:286–295

    Article  CAS  PubMed  Google Scholar 

  • Karlsson O, Roman E, Brittebo EB (2009b) Long-Term Cognitive Impairments in Adult Rats Treated Neonatally with b -N-Methylamino- L -Alanine 112:185–195

    CAS  Google Scholar 

  • Karlsson O, Jiang L, Andersson M, Ilag LL, Brittebo EB (2014) Protein association of the neurotoxin and non-protein amino acid BMAA (β-N-methylamino-l-alanine) in the liver and brain following neonatal administration in rats. Toxicol Lett 226:1–5

    Article  CAS  PubMed  Google Scholar 

  • Khan FR, Alhewairini SS (1989) Zebrafish (Danio rerio) as a Model Organism. INTECH 32:137–144

    Google Scholar 

  • Kim SY, Rydberg S (2020) Transfer of the neurotoxin β-N-methylamino-l-alanine (BMAA) in the agro-aqua cycle. Mar Drugs 18

  • Kolb A, Hildebrandt F, Lawrence C (2018) Effects of Diet and Social Housing on Reproductive Success in Adult Zebrafish. Danio Rerio Zebrafish 15:445–453

    Article  CAS  PubMed  Google Scholar 

  • Langheinrich U (2003) Zebrafish: A new model on the pharmaceutical catwalk. BioEssays 25:904–912

    Article  CAS  PubMed  Google Scholar 

  • Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259:5301–5305

    Article  CAS  PubMed  Google Scholar 

  • Martin RM, Stallrich J, Bereman MS (2019) Mixture designs to investigate adverse effects upon co-exposure to environmental cyanotoxins. Toxicology 421:74–83

    Article  CAS  PubMed  Google Scholar 

  • Martin RM, Bereman MS, Marsden KC (2021) BMAA and MCLR Interact to Modulate Behavior and Exacerbate Molecular Changes Related to Neurodegeneration in Larval Zebrafish. Toxicol Sci 179:251–261

    Article  CAS  PubMed  Google Scholar 

  • Masseret E et al (2013) Dietary BMAA exposure in an amyotrophic lateral sclerosis cluster from southern France. PLoS ONE 8:1–10

    Article  Google Scholar 

  • Mehta P et al (2022) Prevalence of amyotrophic lateral sclerosis in the United States using established and novel methodologies, 2017. Amyotroph Lateral Scler Front Degener1–9

  • Metcalf JS et al (2017) Analysis of BMAA enantiomers in cycads, cyanobacteria, and mammals: in vivo formation and toxicity of d-BMAA. Amino Acids 49:1427–1439

    Article  CAS  PubMed  Google Scholar 

  • Mondo K et al (2012) Cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) in Shark Fins. Mar Drugs 10:509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder DW, Kurland LT, Offord KP, Beard M (1986) Familial adult motor neuron disease: Amyotrophic lateral sclerosis. Neurology 36:511–517

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Cox PA, Banack SA (2004a) A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. PNAS 101

  • Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW (2004b) Occurrence of b-methylamino-l-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurol Scand 110:267–269

    Article  CAS  PubMed  Google Scholar 

  • Neil JMO, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms : The potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  Google Scholar 

  • Nunn PB, Ponnusamy M (2009) β-N-Methylaminoalanine (BMAA): Metabolism and metabolic effects in model systems and in neural and other tissues of the rat in vitro. Toxicon 54:85–94

    Article  CAS  PubMed  Google Scholar 

  • Neumann M et al. (2006) Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis

  • Okle O, Rath L, Galizia CG, Dietrich DR (2013) The cyanobacterial neurotoxin beta-N-methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honeybees. Toxicol Appl Pharmacol 270:9–15

    Article  CAS  PubMed  Google Scholar 

  • Powers S, Kwok S, Lovejoy E, Lavin T, Sher RB (2017) Embryonic exposure to the environmental neurotoxin BMAA negatively impacts early neuronal development and progression of neurodegeneration in the Sod1-G93R zebrafish model of amyotrophic lateral sclerosis. Toxicol Sci 157:129–140

    CAS  PubMed  Google Scholar 

  • Price AL, Spencer CCA, Donnelly P (2015) Progress and promise in understanding the genetic basis of common diseases. Proc R Soc B Biol Sci 282

  • Ramesh T et al (2010) A genetic model of amyotrophic lateral sclerosis in zebrafish displays phenotypic hallmarks of motoneuron disease. Dis Model Mech 3:652–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regueiro J, Negreira N, Carreira-casais A, Pérez-lamela C (2017) Dietary exposure and neurotoxicity of the environmental free and bound toxin β - N -methylamino- L -alanine. Food Res Int 100:1–13

    Article  CAS  PubMed  Google Scholar 

  • Réveillon D et al (2015) β-N-methylamino-l-alanine (BMAA) and isomers: Distribution in different food web compartments of Thau lagoon. French Mediterranean Sea Mar Environ Res 110:8–18

    PubMed  Google Scholar 

  • Rosen DR et al (1993) Mutations in Cu / Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nat 362:59–62

    Article  CAS  Google Scholar 

  • Roy U et al (2017) Metabolic profiling of zebrafish (Danio rerio) embryos by NMR spectroscopy reveals multifaceted toxicity of β-methylamino-L-alanine (BMAA). Sci Rep 7:17305

    Article  PubMed  PubMed Central  Google Scholar 

  • Santoriello C, Zon LI (2012) Science in medicine Hooked ! Modeling human disease in zebrafish. Sci Med 122:2337–2343

    CAS  Google Scholar 

  • Scott LL, Downing TG (2017) A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases. Toxins (Basel) 10(22)

  • Sher RB (2017) The interaction of genetics and environmental toxicants in amyotrophic lateral sclerosis: Results from animal models. Neural Regen Res 12:902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith QR, Nagura H, Takada Y, Duncan MW (1992) Facilitated Transport of the Neurotoxin, P-N-Methylamino-L-Alanine. Across the Blood-Brain Barrier J Neurochem 58:1330–1337

    CAS  PubMed  Google Scholar 

  • Spencer PS et al (1987) Guam Amyotrophic Lateral Sclerosis--Parkinsonism--Dementia Linked to a Plant Excitant Neurotoxin. Science 237(80-. ):517–522

  • Tan VX et al (2018) Detection of the Cyanotoxins L-BMAA Uptake and Accumulation in Primary Neurons and Astrocytes. Neurotox Res 33

  • The ALS Association. https://www.als.org/understanding-als

  • van Onselen R, Downing TG (2018) BMAA-protein interactions: A possible new mechanism of toxicity. Toxicon 143:74–80

    Article  PubMed  Google Scholar 

  • van Onselen R, Venables L, van de Venter M, Downing TG (2018) β-N-Methylamino-L-Alanine Toxicity in PC12: Excitotoxicity vs. Misincorporation Neurotox Res. https://doi.org/10.1007/s12640-017-9743-8

    Article  PubMed  Google Scholar 

  • Vega A, Bell EA, Nunn PB (1968) The preparation of L-and D-alpha-amino-beta-methylaminopropionic acids and the identification of the compound isolated from cycas circinalis as the L-isomer. Phytochemistry 7:1885–1887

    Article  CAS  Google Scholar 

  • Wang S et al (2020) Toxicon Accumulation and distribution of neurotoxin BMAA in aquatic animals and effect on the behavior of zebrafish in a T-maze test. Toxicon 173:39–47

    Article  CAS  PubMed  Google Scholar 

  • Wiltsie D, Schnetzer A, Green J, Vander Borgh M, Fensin E (2018) Algal blooms and cyanotoxins in Jordan Lake, North Carolina. Toxins (Basel) 10

  • Xie X, Basile M, Mash DC (2013) Cerebral uptake and protein incorporation of cyanobacterial toxin β-N-methylamino-L-alanine. NeuroReport 24:779–784

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the late Dr. Christine Beattie of Ohio State University for the gift of the sodG93R transgenic zebrafish. Brain Chemistry Labs thanks the William C. and Joyce C. O’Neil Charitable Trust for support of this research. We thank members of the Planchart lab for helpful discussions during the execution of this work. We dedicate this work to the memory of Dr. Michael Bereman, who bravely fought ALS for 6 years and provided us with the inspiration for this work.

Funding

Ryan Weeks was supported by a Ruth L. Kirschstein National Research Service Award Institutional Training Grant (T32 ES007046); this work was supported in part by the Center for Human Health and the Environment (P30ES025128); funding for AP provided by N.C. State University. Paul Cox lab: William C. and Joyce C. O’Neil Charitable Trust.

Author information

Authors and Affiliations

Authors

Contributions

Ryan Weeks: primary researcher responsible for planning and conducting experiments, along with fish husbandry; assisted with mass spectrometry sample preparation. Sandra Banack: conducted all mass spectrometry experiments and analysis. Shaunacee Howell: aided in conducting behavioral experiments and fish husbandry. Preethi Thunga: responsible for swim tunnel data statistical analysis. Adrian Green: aided in experimental design and behavioral assays, responsible for light/dark assay data analysis. Paul Cox: collaborating PI who advised and directed mass spectrometry experiments. Antonio Planchart: primary PI responsible for project, including mentoring, experimental design, data analysis, and major funding.

Corresponding author

Correspondence to Antonio Planchart.

Ethics declarations

Ethical Approval

All fish husbandry, anesthesia, and euthanasia were conducted in accordance with NC State Institutional Animal Care and Use Committee (IACUC)-approved protocols.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 103539 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weeks, R.D., Banack, S.A., Howell, S. et al. The Effects of Long-term, Low-dose β-N-methylamino-l-alanine (BMAA) Exposures in Adult SODG93R Transgenic Zebrafish. Neurotox Res 41, 481–495 (2023). https://doi.org/10.1007/s12640-023-00658-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-023-00658-z

Keywords

Navigation